范文资源网

导航栏

×
你的位置: 范文资源网 >资料 >导航

资料|分式运算课件(通用十九篇)

时间:2022-11-03

分式运算课件(通用十九篇)。

⬙ 分式运算课件 ⬙

教学目标:

1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.

2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;

3、使学生能够利用最简公分母进行验根.

教学重点:

可化为一元二次方程的分式方程的解法.

教学难点:

教学难点:解分式方程,学生不容易理解为什么必须进行检验.

教学过程:

在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望.

为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去.

一、新课引入:

1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?

2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

3、产生增根的原因是什么?.

二、新课讲解:

通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同.

点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.

在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.

⬙ 分式运算课件 ⬙

听了朱老师上的《分式的复习(一)》一节课,令人耳目一新的。这节课给我留下了深刻的印象,也让我学到了很多。在这里我想谈谈我的听课心得。

1.重视“双基”训练

朱老师这节课十分重视对学生进行“双基”技能的训练,强调从概念回顾入手,概念处理细致入微、注重实质。他先是通过线条型框图梳理知识要点,突出知识再现与二次归纳,达到二次开发,接着再通过例题讲解的方式由浅入深,先易后难地讲解知识。这种教学思路使学生对分式的知识掌握逐层推进,拾级而上,很好地培养了学生的概括归纳能力、合作交流能力与创新思维能力。

2.注重启发引导

朱老师上课的一大特点是善于设问,有启有发,有讲有练。正所谓问能解学生之惑,问能知知识之新,问能促使学生的积极的思维并能巩固学生所学的知识,而练能巩固问之果,练能促成学生的技能。

3. 课堂气氛活跃,师生互动自然

在朱老师的引领下,课堂气氛很活跃,学生们精神振奋,情绪高涨,师生互动自然。朱老师为学生营造了自主、合作、探究的学习氛围,为学生数学思考、解决问题等方面的发展提供了自由的空间,激发了学生主动参与课堂的积极性,使学生潜能得到了尽情的发挥。

⬙ 分式运算课件 ⬙

《分式方程》是《分式》一章的重要内容,也是方程体系中不可或缺的重要组成部分,该课的教学目标是了解分式方程的概念;会解可化为一元一次方程的分式方程;以及了解增根的概念,会对分式方程进行根的检验。车胜凤老师根据教材的内容和学生的实际,对本节课进行了精心设计,主要突出了学生的主体地位,教师的主导作用,体现了课改的新理念,取得了良好的教学效果,以下是本课的一些亮点:

1.导入自然,环环相扣。

车老师首先出示一些代数式,让学生从中挑选几个列出已学过的方程,自然引出一元一次方程及其解法,然后再让学生列出几个“不同的方程”,从而引出分式方程的概念,通过类比、转化等一系列数学思想方法,得出分式方程的一般解法,以问题串的形式抛出问题,从易到难,分解了难点。

2.开放练习,放手探究。

练习环节车老师不囿于教材习题安排,而是充分利用学习材料,继续让学生互编互解,让学生在理解概念、初步掌握解法的基础上,进行有效的合作。放手让学生经历方程的产生以及求解的过程,及时巩固所学知识,有效提高课堂效率。

3.形式多样,体现学本。

《义务教育数学课程标准》指出:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者”。“学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探究、合作交流等,都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜想、计算、推理、验证等活动过程”。基于上述理念,本节课灵活运用多种教学方法,既有教师的引导、讲解,又有学生的独立思考、小组讨论、全班交流,这些丰富多彩的教学形式,充分调动学生学习的积极性,充分发挥学生的主体作用,有效突破难点,体现了新课改以生为本的要求。

“教学永远是一门遗憾的艺术”,本节课也不例外。例如:

1.学生对分式方程产生增根原因不清楚,做题过程中部分同学还忘记检验。增根是怎么回事?由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。它是中考常考的考点,也是比较容易失分的地方。

2.教师在对学生进行教学评价时,要从鼓励的角度出发,充分给予学生以积极的评价,使学生产生积极的情感体验,从而提高其自尊和自信水平。

3.解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母。

总之,本节课概念性知识比较多,而这些知识是学生已有知识的延伸,因此合理安排好已有知识与新知识,以及新知识中各知识点之间的衔接就显得尤为重要。车老师充分利用学生已有的经验,采用丰富多彩的教学方式来引领学生进行探究,值得我们学习。

⬙ 分式运算课件 ⬙

A.B.C.D.

A.M=-1,N=-2B.M=-2,N=-1C.M=1,N=2D.M=2,N=1

A.B.C.2D.-

2.已知x≠0,=________.

4.如果m+n=2,mn=-4,那么的值为________.

5.甲、乙两地相距S千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达;若每小时多行驶a千米,则可提前________小时到达(保留最简结果).

(3)(4)(x+1-)÷

3.(10分)已知,求的值.

4.(10分)一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?

⬙ 分式运算课件 ⬙

教学目标

1. 通过实际操作理解“学习三角形全等的四种判定方法”的必要性.

2. 比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力.

3. 初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法.

4. 掌握证明三角形全等问题的规范书写格式.

教学重点和难点

应用三角形的边角边公理证明问题的分析方法和书写格式.

教学过程()设计

一、 实例演示,发现公理

1. 教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式.

2. 在此过程中应启发学生注意以下几点:

(1) 可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立.如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合.因此△BAD可与△CAE重合,说明△BAD≌△CAE.

(2) 每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定.

(3) 由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等.

3.画图加以巩固.

教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象.

二、 提出公理

1.板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义.

2.强调以下两点:

(1)使用条件:三角形的两边及夹角分别对应相等.

(2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上.

3.板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程.

如图3-50,在△ABC与△A’B’C’中,(指明范围)

三、应用举例、变式练习

1.充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,

例1已知:如图 3-51, AB=CB,∠ABD=∠CBD.求证:△ABD≌△CBD.

分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等 BD=BD得到.

说明:

(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等.

(2)学习从结论出发分析证明思路的方法(分析法).

分析:△ABD≌△CBD

因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD.

(3)可将此题做条种变式练习:

练习1(改变结论)如图 3-51,已知 AB=CB,∠ABD=∠CBD.求证:AD=CD,BD平分∠ADC.

分析:在证毕全等的基础上,可继续利用全等三角形的性质得出对应边相等,即AD=CD;对应角相等∠ADB=∠CDB,即BD平分∠ADC.因此,通过证明两三角形全等可证明两个三角形中的线段相等或和角相关的结论,如两直线平行、垂直、角平分线等等.

练习2(改变条件)如图 3-51,已知 BD平分∠ABC, AB= CB.求证: ∠A=∠C.

分析:能直接使用的证明三角形全等的条件只有AB=CB,所缺的其余条件分别由公共边相等、角平分线的定义得出.这样,在证明三角形全等之前需做一些准备工作.教师板书完整证明过程如下:

以上四步是证明两三角形全等的基本证明格式.

(4)将题目中的图形加以有规律地图形变换,可得到相关的一组变式练习,使刚才的解题思路得以充分地实施,并加强例题、习题之间的有机联系,熟悉常见图形,同时让学生总结常用的寻找所缺边、缺角条件的方法.

练习 3如图 3-52(c),已知 AB=AE, AD=AF,∠ 1=∠2.求证: DB=FE.

分析:关键由∠1=∠2,利用等量公理证出∠BAD=∠EAF.

练习 4如图 3-52(d),已知 A为 BC中点, AE//BD, AE=BD.求证: AD//CE.

分析:由中点定义得出 AB=AC;由 AE//BD及平行线性质得出∠ABD=∠CAE.

练习 5已知:如图 3-52(e), AE//BD, AE=DB.求证: AB//DE.

分析:由 AE//BD及平行线性质得出∠ADB=∠DAE;由公共边 AD=DA及已知证明全等.

练习6已知:如图3-52(f),AE//BD,AE=DB.求证:AB//DE,AB=DE.

分析:通过添加辅助线——连结AD,构造两个三角形去证明全等.

练习 7已知:如图 3-52(g), BA=EF, DF=CA,∠EFD=∠CAB.求证:∠B=∠E.

分析:由DF=CA及等量公理得出DA=CF;由∠EFD=∠CAB及“等角的补角相等”得出∠BAD=∠EFC.

练习8已知:如图3-52(h),BE和CD交于A,且A为BE中点,EC⊥CD于C,BD⊥CD于 D, CE=⊥BD.求证: AC=AD.

分析:由于目前只有边角边公理,因此,必须将角的隐含条件——对顶角相等转化为已知两边的夹角∠B=∠E,这点利用“等角的余角相等”可以实现.

练习 9已知如图 3-52(i),点 C, F, A, D在同一直线上, AC=FD, CE=DB, EC⊥CD,BD⊥CD,垂足分别为 C和D.求证:EF//AB.

在下一课时中,可在图中连结EA及BF,进一步统习证明两次全等.

小结:在以上例1及它的九种变式练习中,可让学生归纳概括出目前常用的证明三角形全等时寻找非已知条件的途径.

缺边时:①图中隐含公共边;②中点概念;③等量公理④其它.

缺角时:①图中隐含公共角;②图中隐含对顶角;③三角形内角和及推论④角平分线定义;

⑤平行线的性质;⑥同(等)角的补(余)角相等;⑦等量公理;⑧其它.

例2已知:如图3-53,△ABE和△ACD均为等边三角形.求证:BD=EC.

分析:先选择BD和EC所在的两个三角形△ABD与△AEC,已知没有提供任一证两个三角形全等所需的直接条件,均需由等边三角形的定义提供.

四、师生共同归纳小结

1.证明两三角形全等的条件可由定义的六条件减弱到至少几个?边角边公理是哪三个条件?

2.在遇到证明两三角形全等或用全等证明线段、角的大小关系时,最典型的分析问题的思路是怎样的?你体会这样做有些什么优点?

3.遇到证明两个三角形全等而边、角的直接条件不够时,可从哪些角度入手寻找非已知条件?

五、练习与作业

练习:课本第28页中第1题,第30页中1,3题.

作业:课本第32页中第6,7,8,9,10题.

课堂教学设计说明

本教学设计需2课时完成.

1.课本第3.5节内容安排3课时,前两课时学习三角形全等的边角边公理,重点练习直接应用公理及证明格式,初步学习寻找证明全等所需的非已知条件的方法,以及利用性质证明边角的数量关系及直线的位置关系,第3课时加以巩固并学习解决应用题和两次全等的问题.

2.本节将“理解全等三角形的判定方法的必要性“列为教学目标之一,目的是引起教师和学生的重视,只有学生真正认识到了研究判定方法的必要性,才能从思想上接受判定方法,并发挥出他们的学习主动性.

3.本节课将“分析法和寻找证明全等三角形时非已知条件的方法”作为教学目标之一,意在给学生归纳一些常用的解题思路,以便将它作为证明全等三角形的一种技能加以强化.

4.教材中将“利用证明两个三角形全等来证明线段或角相等”的方法做为例5出现,为时过晚,达不到训练的目的,因此教师应提前到第一、二课时,就教给学生分析的方法,并从各种角度加以训练.

5.教师可将例题1和几种变式练习制成投作影片(图3-52)提高课堂教学效率.教学使用时,重点放在题目的分析上,并体现出题目之间图形的变化和内在联系.

6.本节教学内容的两课时既教会学生分析全等问题的思路——分析法和寻找非已知条件的方法,又要求他们落实证明的规范步骤——准备条件,指明范围,列齐条件和得出结论,使学生遇到证明三角形全等的题目既会快速分析,又会正确表达.学生学生遇到证明三角形全等的题目既会快速分析,又会正确表达。

⬙ 分式运算课件 ⬙

景老师的课是理念新、模式新,充分体现了学生的主体地位,符合我校“问题学导六步”教学模式的基本要求。取得了良好的教学效果,他的教学特点如下:

1、学生在课前深度预习的基础上总结出课堂口号,口号囊括了本节课的教学目标和教学重难点,经过学科长解读以后老师能及时给出学习目标,这让学生能够更加准确把握本节课学习内容。

2、在学生明白老师给出的学习目标以后,经过短暂的思考和讨论,解决了预习时遗留的问题,同时生成新的问题。

3、生成的新问题每个小组展示在黑板上,每小组以抢题形式圈画自己小组能够独立解决的问题,这样调动了同学们学习的主动性,在展讲环节,学生能够把知识技能很快内化成综合素质,即语言组织能力和语言表达能力。从课堂学生讲解表现看,学生综合素质得到长足发展。

两点不成熟的建议:

1、给学生给出每一个任务时,都要限制时间,让学生学习有紧迫感,这样长期坚持,学生能够在考场上把握好时间,分配好时间。

2、学生在展解完给出解题思路以后,应该给时间让学生独立完成每一道题,同时抓学困生,进一步规范学生的解题步骤。

⬙ 分式运算课件 ⬙

努力结合现实的问题情境,引导学生理解分数乘法的意义。练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。

总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。

在本课的教学过程中,我认为应从这样的几个方面入手:

1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的'充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。

2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

3.解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

⬙ 分式运算课件 ⬙

一、教学目标

1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。

2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。

3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。

4.引导学生不断小结运算方法和技巧,提高运算能力。

二、教学重点和难点

1.重点:分式的加减运算。

2.难点:异分母的分式加减法运算。

三、教学方法

启发式、分组讨论。

四、教学手段

幻灯片。

五、教学过程

(一)引入

1.如何计算:2.如何计算:3.若分母不同如何计算?如:

(二)新课

1.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

2.通分的依据:分式的基本性质。

3.通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

例1通分:

(1)解:∵最简公分母是,

小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

(2)解:

例2通分:

(1)解:∵最简公分母的是2x(x+1)(x—1),

小结:当分母是多项式时,应先分解因式。

(2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),

练习:教材P,79中1、2、3。

(三)课堂小结

1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

⬙ 分式运算课件 ⬙

大家好!

(一)教材分析:(人教版)数学八年级下册第十六章:《分式方程》第一课时本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

(二)、教学目标:

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

(三)教学重点:解分式方程的基本思路和解法。

(四)教学难点:理解分式方程可能产生增根的原因。

(五)学情分析:《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:

1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。

2、探究合作学习。学生互助下进行学习。

(六)教学方法:教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学在师生平等的交流中评价学习。伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,不能用媒体技术替代应有的板书。

(七)、教学过程:

1、复习巩固:大约三分钟

2、讲授新课:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。大约10分钟

活动2:总结定义,探究解法

使学生能从整体上把握数、式、方程及它们之间的联系与区别;及原来学过的方程解法,通过合作探究分式方程(板书)

例1:解方程

23x3=和例2解方程-1=的解

x1x3x(x1)(x2)法,得到解分式方程的步骤

(1)找最简公分母,方程两边乘最简公分母把分式方程转化为整式方程,

(2)解整式方程。

(3)检验,作答。培养学生的探究能力,教师总结方程解法,增强利用类比转化思想解决实际问题的能力及合作的意识。大约15分钟。

活动3:通过学生练习后老师讲评,讲练结合,分析增根,练习题看课件(大约20分钟)

活动4:小节和布置作业,深化巩固(略),大约2分钟

教学思考:在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。因此,同时还要注意老师要深入学生的讨论中,帮助他们得到解分式方程的方法,学生可能出现

(1)不懂的找公分母

(2)容易漏乘

(3)为什么产生增跟和解决增根的检验问题

我的说课完毕,谢谢!

⬙ 分式运算课件 ⬙

一、引导学生回顾与反思

1、出示口算题

30+50 7+60 58-6

20+43 55-23 84-40

2、抽生说说每题的计算方法

3、出题:32+36 99-34

独立计算,请生板演,并说说应注意什么?

二、组织竞争练习

1、比一比,练一练

2、提出比赛规则

3、组织进行口算

1题 独立计算“开火车”校对,统计全对的人数。

2题 独立运用竖式计算

4题 观察图画,用自己的话说说题意,独立完成。

5题 观察图画,互相交流规律,在书上接着画。

6题 在孔雀羽毛上写出得数是37的算式,小组合作。

8题 独立完成

4、统计每组得分,评选优秀小组。

三、通过数学故事,培养学生的分析能力

1、看图讲故事

2、被墨水遮住的地方可能是什么数呢?你是怎么想的?

3、交流汇报。

四、简介“数学万花筒”的小知识

五、小结

⬙ 分式运算课件 ⬙

本节是学习了分式的基本性质后的内容,是分式的基本运算内容之一,分式的加减教学反思。其中,分式加减运算是本节课的重点,异分母的分式加减是本节课的难点,而异分母的分式加减运算是本节课的难点。而异分母的分式加减运算可以转化到同分母的分式加减运算中,因此,掌握好同分母的分式加减运算是关键,本人从以下几方面作反思:

(1)成功之处

本课从实际问题引入,让学生直接感受到实际生活中会碰到分式的加减运算,这就有必要掌握分式加减运算的方法,从而引出本节内容。

由于分数与分式有着很多类似的性质,因而从直观的分数加减法运算开始。先探究同分母分式的加减运算的法则,通过类比的思想方法,由数的运算引出式的运算规律,体现数学知识由具体到抽象,从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,学生很快融入了课堂,调动了学生学习的积极性,教学反思《分式的加减教学反思》。而后,同样利用类比方法,安排了异分母分式加减运算的学习,这样由简到繁,由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握,而且通过通分将异分母的分式加减转化为同分母的分式加减运算上,注重知识间的联系,体现了数学中转化的思想方法,课堂上气氛活跃,学生们积极参与,从课堂学生做习题的情况来看,知识掌握比较好,知识已落实到位。

(2)不足之处

本课出现了有头无尾的情况,前后呼应还没做到位,没有解决引例中“”如何计算这个问题,这是本节课的一个最大的遗憾。课堂教学真的是“一门缺憾的艺术”正是有着这样或那样的缺憾,才使我们更有动力的在探索地道路上大步前行。

一节数学课,经过反思,会发现许多值得推敲的地方,会发觉好多细节的地方需要精心设计,在反思中,能提升自己的认识,为以后的教学积累宝贵的经验,让自己更贴近学生。

⬙ 分式运算课件 ⬙

学习目标

1、能说出约分的意义和步骤。

2、能说出最简分式的意义。

3、能说出分式的乘、除和乘方法则,并能用式子表示。

4、能熟练地进行分式的乘除和乘方运算。

5、会归纳总结整数指数幂的运算性质。

6、能熟练地运用幂的运算性质进行计算。

主体知识归纳

1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2、约分的步骤把分式的分子与分母分解因式,然后约去分子与分母的公因式。

3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。

4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。

7、整数指数幂的运算性质可归纳如下

(1)am·an=am+n(m、n都是整数);

(2)(am)n=amn(m、n都是整数);

(3)(ab)n=anbn(n是整数)、

基础知识精讲

1、正确理解分式约分的意义

(1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的分子与分母的公因式约去。

(2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。

2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:

(1)若分子、分母都是几个因式乘积的形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、

(2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、

3、进行分式的乘除运算时,应注意以下几点:

(1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、

(2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。

(3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。

(4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。

⬙ 分式运算课件 ⬙

一是分式的运算错的较多。

分式加减法主要是当分子是多项式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。

二是分式方程也是错误重灾区。

(一)是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述,

⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;

⑵增根能使最简公分母等于0;

(二)是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

(三)是列分式方程错误百出。

针对上述问题,我从基础知识和题型入手,用类比的方法讲解,与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。

⬙ 分式运算课件 ⬙

一、口算练习

1、出示口算练习

2、抽学生说说计算的过程

二、看图列式

1、第三题

你从图上知道了什么?独立列式解答

2、第九题

讲叙申奥成功的故事,出事申奥投票结果

算算北京比多伦多多几票?

三、巩固练习

1、第七题

看图说题意:一套衣服是什么意思?

请估计100元可以怎样买?

请列式计算,每套衣服应付多少元?

2、第十题

出示图,请学生说说哪些商品,各是什么价格?

请学生读题,列式计算

你还能提出哪些数学问题?

解决提出的问题

四、数学游戏

1、出示神奇的算式

2、请计算第一组第三题,再观察这三题有什么规律?

3、说说发现的规律

4、请按照规律将第一组后五题填出,交流

5、说说这些算式的神奇之处

6、计算第二组前三题,找出规律,再接着把算式填完。

7、第二组算式又有什么神奇之处呢?

8、你还能发现这两组之间的联系吗?

五、小结

通过练习,同学们进一步了解到生活中存在许多数学问题。我们要学好数学,并运用数学知识帮助我们解决生活中的问题。

⬙ 分式运算课件 ⬙

一、目标要求

1.理解掌握异分母分式加减法法则。

2.能正确熟练地进行异分母分式的加减运算。

二、重点难点

重点:异分母分式的加减法法则及其运用。

难点:正确确定最简公分母和灵活运用法则。

1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。

2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。

三、解题方法指导

【例1】计算:(1)++;

(2)-x-1;

(3)--。

分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。

解:(1)原式=-+=-+====;

(2)原式======;

(3)原式=--===。

【例2】计算:。+++。

分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。

解:原式=++=++=+=+==。

四、激活思维训练

▲知识点:异分母分式的加减

【例】计算:-+。

分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。

解:原式=[x+2-]-[x+3+]

+[+1]

=x+2--x-3-++1

=--+=====。

五、基础知识检测

1.填空题:

⬙ 分式运算课件 ⬙

听了顾老师同一节课,不禁感叹:大师不愧为大师。

1、特殊化、一般化思想

分式本就是类比分数产生的。分式是一般化了的分数,而分数是特殊化了的分式。将分数的分子分母(尤其是分母)换成字母便成了分式;而赋予分式中字母的值便得到了分数,这样再引出求分式的值,顺其自然。

2、去“杂”思想

在学了等式与不等式后,学生在确定最后的解时,往往分不清“或”与“且”的关系。对于解:x+1不等于0,学生没学过,也不太容易理解结果:x不等于—1。我当时是延伸了不等式的解的确定方式——利用数轴,形象直观地表示成数轴上除了挖去—1这个空心点以外的所有的点,学生看似懂了,但仅限于懂了这一点,当然也体会到数形结合的好处。而顾老师则给学生介绍了去“杂”思想。细想一下,曾经也遇到过这样的难题,头想破了也找不到解决的方法。但如果从它的相反面去考虑,便会“柳暗花明”了。然后再去除由这种反面情况求出的解,便就是原问题的解了。其实几何证明里的“反证法”也是同样的道理。

3、课堂的延伸

在能力拓展部分,老师设计了这样一个问题:请设计一个情境,解释分式(a+2)分之a的值随a变化的情况,其中a>0。咋一听,不知无从下口,学生也只是设计了一个情境解释了这个分式,但对其值随a的变化而变化的规律就无法解释了。老师后来用糖水的例子作了提示,大家恍然大悟,原来所学的数学知识就暗藏在生活之中。这便也是:数学来源于生活,也应用于生活吧!最后老师顺势布置了一个课题,让学生试着去研究。如果原来的汤有b克。汤中溶解了a克的盐后,再加入m克的盐,你能发现分式的一个性质吗?其实老师的布置是别有用心的,他想让我们知道:做研究型的教师是幸福的,教上研究型的学生便是福中之福了。所以我们平时不单自己要试着思考、研究,更应该注重引导学生进行研究,让大家在研究中找回教学和学习的乐趣。

我的一点思考:

分式概念的这一节课,学生在以下几个方面容易产生混乱。

(1)分式概念的形成。形式类比分数是最好的啦。而在生活中用到除法的数量关系也可能出现分式。在得到的一些式子后,问学生:哪些是你学过的?学生其实对初一学的整式、单项式、多项式等已经没什么印象了,他们会觉得这些式子都学过。所以有必要的话,在课前也安排学生将上面的知识先复习一下。这样也便于比较,形成与现有知识——整式相对立的名字“分式”。

(2)分式的分母不能为0。我在课堂引入时,先让学生回答:2分之1,3分之5等是什么?顺便写一个0分之2是什么?这样学生在接触到分式后自然而然会想到分母不能为0。以前开课时用的陷井的动画特别提醒学生注意分母不能为0的。

(3)设计情境解释分式。如(b—1)分之a,学生只顾到解释除法,而忽略了对(b—1)的解释。如:一共a个苹果,分给(b—1)个人,那么原分式就表示每个人得到的苹果的个数。

(4)“或”与“且”的关系理不清。前面已经说过,老师用到了:去“杂”思想。尤其是在分式的值为0时,要具备两个条件,即:分子为0,同时分母不能为0。如:a取何值时,分式(a2+2)分之(a2—4)值为0。还不如就让学生先利用分子为0求出a=±2,然后再分别将2和—2代入分母,检验其是否为0,为0则舍去。这样就免去了“或”与“且”的烦恼,也不会出现:a2+2不等于0,所以a2不等于—2,a不等于±根号2了。

⬙ 分式运算课件 ⬙

分式是初中数学中继整式之后学习的又一个代数基础知识,是对小学所学分数的延伸和扩展,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。因此,学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础。[来源:]

本节课是新授课,使学生掌握分式的概念以及分式是否有意义的条件是本节课的教学重点;由于分式的分母中含有待定字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。

根据教材和新课标的要求,以及结合学生的实际情况,我认为本节课的教学目标是:

通过对分式与分数的类比,经历探索由整式扩充到有理式的过程,初步学会运用类比转化的思想方法研究数学问题。

培养学生的概括能力和实践能力,并体会“观察―探究―归纳”的数学方法,发展迅速思维的灵活性和广阔性。

关注学生的情感与态度,通过合作交流,探索实践,培养学生的主体意识。

本节课是数学基础知识,学生的可接受 性较强,因此,针对本节课的知识特点,在教学方法上,我将主要使用“启发―探究”教学法,同时,配合“讲解法”和“研究法”。

在教学的过程中,我注重了问题的提出过程,知识的形成过程,能力的发展过程,以及解决问题的方法及其规律的概括过程,尤其是合作交流,创新精神和实践能力的培养过程。

此外,本节课采用多媒体辅助教学,有助于激发学 生的学习兴趣,提高学习效率。针对不同层次的学生,将本着以人为本,因材施教的原则,分类推进,下保底二上不 封顶,并且注重培养学生的屯节合作精神和互帮互助的品德。

根据教材和新课标对学生知识及能力层面的要求,以及充分考虑到学生的认知水平和实际接受能力,在本节课的学法指导中,我将引导学生合作学习,探究学习,自主学习,同时,配合使用网络学习,以期通过本节课的教学,从以下几方面提高学生的数学素养:

1.通过“观察―探究―归纳”,培养学生收集、提炼和归纳信息的能力,启迪学生的探索灵感。

2.通过启 发学生的探索途径和口述解决问题的过程,培养学生由具体到一般的辩 证思想和语言表达能力。

3.通过课堂讨论,培养学生的合作交流能力。

4.通过探索实践,培养学生的创新精神和实践能力。

为了更好的体现我上述的教学理念以及整体化的教学思想,我将本节课的教学程序设置为如下五个环节:

数学源于生活,为了使学生对本节课有更深层次的.把握,激发学生的学习兴趣和求知欲,在这一环节中,我打破了在以往教学中直接引入课题的常规,从网上下载了几幅有关沙尘暴的图片,请看大屏幕,同时,我结合本节课即将学习的有关数学知识以及我国目前的环境现状,设计了如下问题。启发学生依据题意,列出相应的代数式,然后我将引导学生观察所列式子的特点,并将其与分数进行比较,由此启发诱导,引入新课。

我这样设计的目的在于,借助于多媒体,从实际生活中的实例引入课题,使学生在实际生活中感受、体会即将学习的相关数学知识,让他们从现实情境和已有的知识经验出发,展开对新知识的探索,同时,由于问题创设具有很强的现实意义,因此,它在激发学生的学习兴趣和求知欲的同时,也有助于增强学生的环保意识。

这一环节是整个教学活动的中心环节,为了充分体现学生在整个教学活动中的主体地位,我将在学生已有知识经验的基础上组织学生进行学习,探究分式的概念、意义以及简单应用,加深他们度知识的理解,为此,我将新课的讲解过程细分为如下四个步骤:

为了使学生能够准确区分“分式”与“整式”,加深他们对分式的理解,我打破了在传统教学中直接给出定义的常规,设计了想一想,引导学生在上一环节对所列代数死与分数进行比较的基础上,再将其与整式相比较,找出二者的异同,从而类比整式归纳总结出分式的定义。

分式的分母不能为零,即只有当分式的分母不为零时,该分式才有意义。对于这一问题的讲解,我将让学生类比分数以及结合前边的实际问题加以理解。

为了使学生更容易理解和接受分式的基本 性质,在讲解分式的基本性质之前,我安排了议一议活动,设计了如下两道题目,引导学生对所示问题进行充分讨论,共同探索分式基本性质,然 后,我将以课堂提问的方式,逐一板书讨论结果,综合学生的回答,归纳总结出分式的 基本性质,即:分式的分子 与分母同乘以(或除以)同一个不等于零的正式,分式的值不变。

通过具体的例题,给学生演示本节所学知识的.具体应用,讲解完毕后,挑选 学生上台板演,在规范学生讲解步骤的同时,加深他们对本节所学知识的理解和记忆。

至此,我完成了对本节课所有理论知识的教学。

众所周知,理论是用来指导实践的,为了使学生能够将所学的理 论知识很好的应用于实践,实现理论与实践的完美结合,我将教学程序中的第三个环节设计为课堂练习。

在这一环节中, 我为学生精心挑选了课本中的两道习题,并进行了适当的改编,作为随堂练习,要求学生在本节所学知识的基础上,结合具体的题目亲自动手练一练,以便在检验本节课教学效果的同时,针对学生在练习中出现的问题进行及时的查漏补缺。

以课堂提问的方式对本节课进行小结,结合学生的回答,教师最后给出规范总结,以重申本节课所学习的重点及难点。

针对不同层次的学生,更好的体现因材施教的原则,我将本节课的作业分为必做题和选做题两部分。

为了使本节课达到更好的教学效果,这就是我针对本节课的所有内容进行的板书设计,在板书设计的过程 中,我的指导思想是尽可能使得版面结构合理,简明扼要,使学生一目了然,易于抓住重点、难点和关键。

我的说课到此完毕,谢谢各位老师!

⬙ 分式运算课件 ⬙

学习目标:

(一)学习知识点

1、用分式方程的数学模型反映现实情境中的实际问题.

2、用分式方程来解决现实情境中的问题.

3、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.

学习重点:

1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.

2.根据实际意义检验解的合理性.

学习难点:

寻求实际问题中的等量关系,寻求不同的解决问题的`方法.

  学习过程:

Ⅰ.提出问题,引入新课

前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.

接下来,我们就用分式方程解决生活中实际问题.

例1:某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.

(1)你能找出这一情境的等量关系吗?

(2)根据这一情境,你能提出哪些问题?

(3)这两年每间房屋的租金各是多少?

解法一:设每年各有x间房屋出租,那么第一年每间房屋的租金为______元,第二年每间房屋的租金为__________元,根据题意得方程,

解法二:设第一年每间房屋的租金为x元,第二年每间房屋的租金为_______元.第一年租出的房间为__________间,第二年租出的房间为__________间,根据题意得方程,

例2:小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本的价格各是多少?

解:设软皮本的价格为x元,则硬皮本的价格为________元,那么15元钱可买软皮本_________本,硬皮本___________本.根据题意得方程,

图3-4

  活动与探究:

1、如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(20xx年吉林省中考题)

2、从甲地到乙地有两条公路:一条全长600千米的普通公路,另一条是全长480千米的高速公路。某客车在高速公路上行驶的速度比在普通公路上快45千米/时,由高速公路从甲地到乙地所需时间是由普通公路从甲地到乙地所需时间的一半。求客车在高速公路上行驶的速度。

3、轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流的速度为3千米/时求轮船在静水中的速度?

  积累与总结:

1、列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.

2、列分式方程解应用题的一般步骤:(1)审清题意,找出等量关系;(2)设出__________;(3)列出_________;(4)解分式方程;(5)检验,既要验证是否是原方程的的根,又要验证是否符合题意;(6)写出答案。

⬙ 分式运算课件 ⬙

1、对学生原有的认知水平估计过高,造成求分式的值为零时,讨论不全,忽略了分母不为零的条件。另外个别学生计算能力还有在于提高。在以后的教学中应根据学生的实际情况设计一些更为简单和基础的练习。

2.师生互动不默契。在教学过程中,师生配合得还不十分默契,尽管我在教学中采取了一些积极措施,但在教学中还有死角存在。

    更多精彩分式运算课件内容,请访问我们为您准备的专题:分式运算课件

文章来源://www.zy185.com/ziliao/141247.html

资料相关文章

更多>