整式运算思想总结(推荐十一篇)
时间:2017-12-11整式运算思想总结(推荐十一篇)。
▷ 整式运算思想总结
引言:
整式是数学中非常重要的概念之一,涉及到多项式的加、减、乘运算、因式分解以及方程求解等内容。掌握整式的概念和运算规则对于学习代数学是至关重要的一步。本文将通过详细、具体和生动的方式呈现整式的课件内容,以帮助学生更好地理解和掌握整式的概念和运算规则。
一、整式的定义
整式是由常数和变量的乘积相加减而成的代数式。其中,常数称为整式的系数,变量的指数称为整式的次数。通过这样的定义,我们可以开始讨论整式的运算规则。
二、整式的加减运算
1. 同类项的概念
同类项是指具有相同变量以及相同次数的项。在整式的加减运算中,只能对同类项进行相加或相减。
2. 加减运算的方法
(1)对于同类项,我们只需要将系数相加或相减,保持变量和次数不变。
(2)对于不同类项,直接放在一起,不进行运算。
通过一系列实际例子和练习,我们可以帮助学生巩固对整式的加减运算的掌握。
三、整式的乘法运算
整式的乘法运算是非常基础也是非常重要的一个运算规则。我们将通过以下步骤讲解整式乘法的规则和积的求解方法。
1. 一般乘法法则
整式的乘法要满足乘法交换律和分配律。乘法的结果称为积。
2. 多项式的乘法
我们可以通过分配律的运用,将多项式的乘法转化为多次单项式相乘的形式,然后利用一般乘法法则进行求解。
通过例题和实际应用,我们可以让学生理解整式的乘法运算,并通过练习提高他们的乘法运算能力。
四、整式的因式分解
因式分解是将一个整式分解为几个整式的乘积的过程。它在解方程和求根等问题中起着至关重要的作用。
1. 因式分解的方法
(1)提公因式法:寻找多项式中的公因式,并提取出来。
(2)公式法:应用一些特定的公式,如平方差公式、完全平方公式等。
(3)根与系数的关系:通过将整式表示成与其根的关系来进行因式分解。
2. 实例与应用
我们将通过一些具体的实例来演示因式分解的过程,并结合实际问题,让学生理解因式分解的应用。
五、整式的方程求解
整式的方程求解是代数学中的一个重要内容。通过解方程可以找到整式的解,进而解决实际问题。
1. 方程的定义
方程是等式的一种,其中包含有未知数,并且要求找出使得等式成立的未知数值。
2. 求解过程
(1)将整式移项,得到等式的标准形式。
(2)运用整式的运算规则,逐步化简方程,并寻找解的限制条件。
(3)通过解方程,得到整式的解,并验证解的合理性。
结语:
整式是代数学中的重要概念,掌握整式的定义和运算规则对学生的代数学习至关重要。通过本课件的详细阐述,希望能够帮助学生更好地理解和掌握整式的概念和运算规则,提高他们的代数能力。同时,通过实例和应用的介绍,能够使学生更好地将整式运用到实际问题的解决中,提高他们的综合问题解决能力。
▷ 整式运算思想总结
上完这节课后,本人反思如下:
1、本课知识点较多,所以梳理知识花了较多的时间,对于整式的运算,从合并同类相开始,然后是同底数幂的乘法,单项式的乘法,积的乘方,幂的乘方,这样从易到难,同学们教易接受。
2、课堂上给学生练习的时间不够,对于一部分概念复习之后,应当马上配上相应的练习,这样更有利于学生的当堂巩固。
3、练习的难度应当和课本贴近,这样使学生听过之后马上能做,让他们体验学习的成就感,这样更有利于激发他们的学习的积极性。
4、应当认真学习考试说明,对于中考的要求能做到心中有数。这样就不会把单项式的除法也作为掌握要求了。
5、应当留一些时间学生板演,这样便于让学生自己发现问题,最好让学生自己订正,通过相互间的讨论,印象会更深刻。
6、对于课后小结,要鼓励学生自己写,自己讲,只有通过他们自己的思考得到的东西,印象才会更深刻。
7、复习课的例题要精挑细选,让学生做最少的题目,达到良好的效果。
如何使复习课更为有效呢?下面我就将自己的点滴感受总结如下:
一、教学内容要精
复习课是对所学内容进行一个系统地复现,巩固与内化的教学活动,同时,它又是一个有针对性地诊断教学。通过一定的复习,老师应解决一些学生混淆不清的知识,弥补一定的知识漏洞,并帮助他们建构起自身的知识体系。所以,我觉得在复习课前对教学内容进行筛选和重组是必要的。我们需要总结出知识点之间的关联性,提炼出知识点的重中之重以及罗列出学生容易犯错的知识点,然后重组教学内容,经过这样的筛选之后,教学内容更有针对性,课堂教学也更为有效了。
二、教学切入点要准
内容确定了,我们就要找准教学切入点,能在问题症结处对症下药,使学生更好的理清知识联系,帮助他们建构起自己的知识体系。比如,把动词的不同形式作为教学切入点展开教学,然后展现使用这三种结构的不同句型,最后要求学生柔和这些句型进行表达,由浅入深,层层推进,这样教学思路更为清晰,学生在建构知识体系时也更容易了。
三、教学环节衔接要顺
优秀课的特点之一就是流畅,因为环节之间的紧密相扣,知识点之间地自然过渡,能紧紧吸引学生注意力,让学生在不知不觉中完成知识的转换,从而,大大提高课堂效率。所以我们要能够巧妙地整合教学内容,创设情景,不断激发学生运用语言的欲望。比如,从自我介绍入手,介绍自己喜欢做的事,介绍自己的学校,转而引入学生的学校,一步一步地实现了知识的重现和运用。
四、教学方式要新
复习课既然是对所学知识的'复现,那势必会存在一定的重复,而重复教学却是教学中最忌讳的,因为学生生性好奇,他们热衷于新鲜的事物,一旦一样东西重复两次以上,他们就会感到索然无味,失去学习兴趣。既然学习内容上的重复是不可避免的,那我们就应该尽量减少在教学方式上的重复。通过多种渠道丰富课堂教学资源,充分利用学生资源,课本资源及多媒体资源,采用比一比,赛一赛,说一说等多种方式开展活动,而且内容都是非常贴近学生生活,能够引起他们的学习共鸣。
五、练习设计要精而全
在复习课上增加适量的笔头练习是必要的。一方面,写作能力也是学生应具备的能力之一,另一方面,适当的笔头练习可以及时向老师反馈学生的学习状态,便于老师及时调整以下的教学步骤。讲练结合,精讲精做,针对主要教学内容设计习题,在习题设计上充分考虑到了层次性,既有深度,又有广度。操作过程中,即讲即练即反馈,及时解决学生在学习过程中碰到的问题与困惑。
▷ 整式运算思想总结
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1(P166例1)
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)
=3x2-6x+5+4x2-7x-6(去括号)
=7x2+x-1(合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
整式的加减(1)
▷ 整式运算思想总结
一、比一比看谁最快、最棒:
1、-0.4ab3的系数是次数是。
2、多项式3x2+2x-3x-4的最高次项是,同类项是,常数项是。
3、去括号3a-(2ab-3b2+4)=
二、应用知识,提高能力,你一定行:
已知小明的年龄是岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的一半多一岁,求三个人的年龄和。
学生独立思考,然后在本上做,找一名同学板书。
培养学生运算能力和分析问题解决问题的能力。
本节课的学习你有哪些收获?
师生互动梳理知识。弄清本章所学的概念、法则和有关的知识内容以及它们之间的联系与区别,并写出知识结构图。
教学反思:
本节课在学生充分思考的基础上,开展小组交流和全班交流。使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过程的反思归纳。留给了学生充足的时间和空间,反思知识的发生发展过程。但由于留给学生时间较长,课时感到很紧张,今后要注意改进。
▷ 整式运算思想总结
教后反思能够提高教师的教学质量,下面是由小编为大家带来的关于整式教学反思,希望能够帮到您!
整式教学反思一
对于《整式》这一节内容,教材的安排是在学习代数式和代数式的值的基础上,分别介绍了单项式与多项式的概念及相关知识,然后在这些概念的基础上,下几节课逐步展开同类项的概念、合并同类项的法则以及去括号与添括号的法则,所以学好整式这节内容对于将来更进一步深入代数式的相关运算有着至关重要的作用。
这节课,我首先回顾了代数式的相关概念,给出实际例子,让学生来列出符合这些例子的相关代数式,并让学生观察这些代数式的特点,从而引出单项式的定义,并强调一些注意点:1、单独一个数字和字母也是单项式;2、根号内和分母内不含有字母。然后及时操练,让学生判断黑板上所给出的代数式是否为单项式,进一步掌握单项式的特点。然后再以“-5 a b3”为例,介绍单项式的系数和次数,并指出常数需要注意的问题。然后以填空的形式,让学生及时得到巩固。并及时总结在求一个单项式的次数和系数时需要注意的问题。
接下去,多媒体继续给出一组涉及多项式的实际应用题,询问学生是否还能用单项式来解决,自然引出多项式的概念,并简单介绍多项式的相关概念。然后让学生找“3x2-2x+5”和“-ab+2a2b”的项以及各项的次数,然后告诉学生这两个多项式的次数分别为2次和3次,让学生自己来归纳判断一个多项式次数的方法,并给出一个多项式及时操练巩固。接着以例3和例4来进一步巩固多项式的相关知识。
然后,简单介绍一下整式的概念,并以判断题的形式进一步加深对整式的理解。最后,以一组课内练习来介结束本堂课的教学任务。并给出思考题作为课后探究。
上课之前,我就反复问过自己:这节课我是要教给学生知道什么,怎么去把我要他们知道的东西教给他们,什么地方是需要我一直强调且注意的。本着这个宗旨,整节课下来,自己感觉思路还算清晰,学生反应基本上能跟上我的思路,感觉这样的锻炼对自己来说也是有进步的,与此同时,我也意识到自己确实还存在很多经验上的问题,特别在处理一些问题细节上,并不是很到位,所以感觉整堂课没自己想象中的那么连贯。课后,师傅和一些前辈及同事也帮我指正了很多不足之处,所以很感谢他们对我的帮助,他们所提出的这些观点才是最能促进我成长的。
以后的教学过程我想我会去注意这些:
1、课堂引入太过于普通,以后可以选择精彩一点的引入,使得整堂课能一开始就具有一定的吸引力,让学生有兴趣继续学下去;
2、尽量抽出时间让学生来板书某些练习的具体过程。其实从学生的当堂练习中可以发现很多问题,而这些课堂上所反应的问题往往都是学生在做作业的过程中最容易出错的`地方;
3、在讲解一些练习的时候,不需要面面俱到,同类的问题讲解尽量不要过多,尝试着让学生自己学会去思考为什么。所以讲解题目最需要的就是一个度,重点难点是需要一遍遍强调,但过多的分析反而会降低学生自己思考及探究的能力,教师是课堂上的引导者,如何引导学生去思考,并激发学生大胆说出自己的想法,这是课堂气氛好与差的关键,学生上课的激情也就在此。
4、在处理一些比较简单的口答题的时候,可以选择“开火车式”的回答方式,让不同程度的学生都能融入到这节课中去,这个效果会比一个个举手回答好。
5、时间处理能力方面还存在欠缺。一般情况下,如果本节课的内容已完成,正在处理习题的时候下课铃响,其实这时候也可以煞住,把问题直接丢给学生,让学生课后去思考,这样就能避免出现拖课的现象。
6、在主干知识掌握之后,对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟。
整式教学反思二
整式及整式的加减法在本学期并不是难点,但是也是很重要的一个单元。《整式》这节课作为本章起始课显得尤其很重要,核心概念是单项式与多项式的概念,及由此归纳出的整式的的概念。这也是本节课教学重点。通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,及“转化”的思想方法,由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性。
在教学中我注意发挥本节内容整式承前启后的作用,在前面的学习中,学生们已经学习了用字母代替数,列代数式来表示简单的数量关系,有了这些基本知识,学生已经对整式具有了一定的感性认识。因此,在引入情境中设置两个用代数式表示的问题,这两个问题的结论中包含数与字母、字母与字母的乘法运算以及乘方运算,还特别使它们的系数有正有负也有分数。然后让同学们去找它们的共同特征,通过自主探究的方式让学生发现单项式的主要特点,然后总结归纳出单项式的概念。然后重点落实单项式的系数和次数,通过一组练习加以巩固,并及时总结判断的方法及注意事项。
▷ 整式运算思想总结
有理数的学习是运用算术思维进行直观计算的过程,整式的学习则是运用代数思维进行非直观符号化运算的过程,它们之间既有联系又相互区别,因此整式的学习需要类比有理数的概念性质、运算法则等知识来完成。
在这一章的教学中,我首先从学生学过的有理数、一元一次方程、二元一次方程(组)等知识中涉及到的字母“代”数出发,引入字母表示数的概念,帮助学生理解较为抽象的字母表示数的意义,在此基础上归纳出代数式的概念,从而学习整式的相关概念;接着类比有理数的加减乘除乘方运算及其运算法则,学习相应整式的加减乘除乘方运算;最后介绍三个乘法公式和四种最简单常用的分解因式的方法。
结合学生的学习反馈,我认为在教学中应注意以下几个问题:
1.字母表示数是“代”数的基础,虽然学生对字母表示数有一定的感知,但教学时,要给学生充分机会理解字母表示数的意义及作用。比如3的倍数,算术上表示为3、6、9??,而代数上表示为3n。也就是说,3n不是指某一个数,而是代表了一组数3、6、9??,并且简洁明了地揭示出这组数的规律。
2.要进行数学思想方法的渗透。如列代数式就是将文字语言转化为符号语言的过程;求代数式的值隐含着一般到特殊的思想方法等等。
3.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数、同类项等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念。
4.帮助学生理解整式运算结果与有理数运算结果的差异。比如对于2+3=5,2+3是一种运算,得到的结果是5;而对于a+b,它既被视为一种运算,也被视为这种运算的结果,这与算术是有所区别的。
5.乘法公式是对特殊整式乘法的规律性描述,也是因式分解中运用公式法分解因式的基础,需要适度的练习巩固。学生容易犯的错误有:(a+b)^2=a^2+b^2,(a-b)^2=a^2-b^2等。
6.因式分解是整式中重要的恒等变形,它与整式乘法是互逆关系。教学时,要让学生掌握因式分解的方法“一提、二套、三分组”,并且强调因式分解必须在有理数范围内分解到不能分解为止。
总的来说,教师要有意识地培养学生算术思维向代数思维的过渡,具体数字运算向抽象字母符号运算的转变,这样,学生整式学习的任务也就能顺利完成了
▷ 整式运算思想总结
教学目的:
1。经历及字母表示数量关系的过程,发展符号感;
2。会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
教学重点:
会进行整式加减的运算,并能说明其中的算理。
教学难点:
正确地去括号、合并同类项,及符号的正确处理。
教学过程:
一、课前练习:1。填空:整式包括_____________和_______________
2。单项式的系数是___________、次数是__________
3。多项式3m3—2m—5+m2是_____次______项式,其中二次项系数是______,一次项是__________,常数项是____________。
4。下列各式,是同类项的一组是( )(A)22x2y与yx2 (B)2m2n与2mn2 (C)ab与abc
5。去括号后合并同类项:(3a—b)+(5a+2b)—(7a+4b)。
二、探索练习:
1。如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为_____________交换这个两位数的十位数字和个位数字后得到的两位数为__________________,这两个两位数的和为_________________________________。
2。如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为___________,交换这个三位数的百位数字和个位数字后得到的三位数为______________,这两个三位数的差为___________________________。
●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?
▲整式的加减运算实质就是____________________________,运算的结果是一个多项式或单项式。
三、巩固练习:
1。填空:(1)2a—b与a—b的差是__________________________;
(2)单项式、、、的和为___________;
(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需_______个棋子,n个三角形需__________个棋子。
2。计算:(1);(2);(3)。
3。(1)求与的和;(2)求与的差。4。先化简,再求值:,其中。
四、提高练习:
1。若A是五次多项式,B是三次多项式,则A+B一定是( )(A)五次整式(B)八次多项式(C)三次多项式(D)次数不能确定
2。足球比赛中,如果胜一场记3a分,平一场记a分,负一场记0分,那么某队在比赛胜5场,平3场,负2场,共积多少分?
3。一个两位数与把它的数字对调所成的数的和,一定能被11整除,请证明这个结论。
4。如果关于字母x的二次多项式的值与x的取值无关,试求m、n的值。
五、小结:整式的加减运算实质就是去括号和合并同类项。
六、作业:第8页习题1、2、3
▷ 整式运算思想总结
1.能说出单项式与多项式相乘的法则,并且知道单项式乘以多项式的结果仍然是多项式。
2.会进行单项式乘以多项式的计算以及含有单项式乘以多项式的混合运算。
3.通过例题教学,培养学生灵活运用所学知识分析问题、解决问题的能力。
重点:本节课的教学重点是掌握单项式乘以多项式的`法则。
问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一 个月内的销售量(单位:瓶)分别是a,b、c.你能用不同的方法计算它们在这个月内销售这种商品总收入吗?
让学生分析题意,得出两种解法:
解法(一):先求三家连锁店的总销量,再求总收入,即总收入(单位:元)为:m(a+b+c)①
解法(二):先分别求三家连锁店的收入,再求它们的和,即总收入(单位:元)为:ma+mb+mc ② 请学生探究①和②是否表示的结果一致?
得出结论后再由乘法分配律公式(a+b)c=ac+bc从另一个角度推出结论m(a+b+c)=ma+mb+mc?
想一想:你能由此总结出单项式与多项式相乘的乘法法则吗?教师总结如下:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. ?例题分析:分部讲解课本100页例5 的两道例题 (在学习过程中重点提醒学生注意 符号问题,多项式的每一项都包括它前面的符号)
(一)根据例题分析,启发学生总结单项式与多项式相乘的实质和一般步骤:
1.单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法 。
2.单项式与多项式相乘时,分三个阶段:①按分配律把乘积写成单项式与单项式乘积的代数和的形式;②按照单项式的乘法法则运算 ③再把所得的积相加.
(二)强调计算时的注意事项:
1.计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负
4.对于混合运算,注意最后应合并同类项。
练一练:课本101页的练习1和2 。给学生足够的时间进行基础练习,安排2-3个同学在黑板上演示解题过程,及时观察学生知识的掌握状况,及时纠错以便加深印象,使学生深刻理解单项式与多项式相乘的解题思路及基本方法。(注:学生在计算过程中,容易出现符号问题,要特别提醒学生注意.)
计算:(1)3a(5c-2b)?(2)(x-3y)·(-6z) 让学生在练习本上计算,然后老师通过课件对照答案,这样使学生更加熟练地掌握单项式与多项式相乘的解题思路及基本方法。
1、这节课你学到了哪些知识?
这节课,实际内容不多,也很简单,重要的是用法则来进行计算,但是在讲课时我通过实际问题,和学生一起推导出了法则,然后让学生学解题。我感觉如果让学生自己通过小组探究法则,然后学解题,这样效果会更好。
▷ 整式运算思想总结
篇1:数学《整式》说课稿<\/h2>
一、教材分析
本章的主要内容是单项式、多项式、整式的有关概念,合并同类项、去括号法则、整式的加减运算.这些知识是以后学习分式、根式运算以及函数等知识的基础.同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具.
这节课作为本章起始课显得很重要,核心概念是单项式与多项式,及由此归纳出的整式的的概念.这也是本节课教学重点.通过数与式之间的联系,教材中蕴含的主要数学思想方法有“类比”,“转化”的思想方法, 由单项式与多项式间的关系,体现了数学知识间具体与抽象的内在联系及数学的内在统一性.
二、学情分析
在小学和前两课时,已经学习了用字母表示数、列代数式表示现实世界中简单的数量关系,学生已经对整式具有了一定的感性认识.但在学习本课重点----单项式的概念、系数和次数,理解多项式的概念和正确确定多项式的次数和项数这些新出现的概念与名词时特别要处理好本课教学难点:①系数是负数、分数、±1或含有π时的情形.②多项式的次数和项的次数混淆.
三、教学目标设计.
知识技能目标:(1)理解并掌握单项式的概念、系数和次数;(2)理解并掌握多项式的概念和正确确定多项式的次数和项数;
过程方法目标:通过小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
情感态度目标:培养学生的自学能力和乐于探索、勇于创新的科学精神.
四、课堂结构设计.
本节课堂教学采用“问题—探究—应用—拓展—提高”课堂结构,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程.
五、教学媒体设计.
①多媒体辅助教学②小组合作讨论式教学两种方式.
六、教学过程设计.
(1)引入
多媒体展示一组都是数字与字母的乘积的思考题,学生独立思考完成.完成后请学生汇报,然后确认并板书:引导学生一同分析上述各式子,指出各式的共同点.
(2)归纳出单项式的概念
提出“单项式”的概念,并举例说明系数、次数的概念.这是本课第一个重点内容.
通过一组练习帮助学生学会识别单项式以及单项式的系数与次数,特别弄清负数做系数,强调系数包括前面的符号.还要弄清只含有字母因数的单项式的系数是1或-1,系数1常省略.
(3)通过一组思考练习题归纳出“多项式”的.概念
从单项式到多项式的概念提出,是一个从特殊到一般的一个过程,也有一个类比的思想.多项式也是一个重点内容,指出共同点,着重指明多项式是几个单项式的和.
(4)通过一组练习题识别多项式及多项式的项与次数,帮助学生掌握多项式有关的概念.
(5)归纳出“ 整式”的概念.
设计一个小练习,给出若干代数式,让学生把判断哪些是多项式.既加深对单项式、多项式概念的掌握,同时归纳出整式的概念.
(6)巩固练习
设计一组综合练习题,巩固单项式、多项式和整式的概念
(7)拓展提高
加深对概念的掌握,并能够应用概念解决相关问题
引导学生小组间进行民主小结,本课学到哪些知识?
(9)当堂反馈
设计一组涵盖本课主要内容的检测题,时间5分钟.检测题要充分体现本课的重点与难点.
篇2:整式加法和减法数学说课稿初一<\/h2>
在学生练习和讨论时,教师要“耳听四方,眼观八路”,将学生中反馈的信息迅速纳入下一进程的教学活动中去。比如有的学生这样做第题:
,还有不少学生概括合并的法则是“把同类项的系数相加减”,对此我做出补充说明:一是强调多项式中的项是通过加法连接而成的,所以中的“―”应视为项的系数的符号,二是根据分配律,合并时应把项的系数相加,而不是相加减。通过让学生自曝错误再辨析纠正错误,学生对法则的理解更透彻了,用起法则来也更得心应手了。
接下来我又以例题2为例,教给学生具体的操作步骤:一画、二换、三并,三个步骤简明扼要,便于学生模仿训练,尽快形成基本技能,并且告诉学生,熟练后还可以省略一些步骤,做到口算。
例2合并同类项
;.
解-3x2-14x-5x2+4x2xy3+x3y-2xy3+5x3y+9
=-3x2-5x2+4x2-14x=xy3-2xy3+x3y+5x3y+9
=x2-14=xy3+x3y+9
=-4x2-14x-xy3+6x3y+9=
训练中,学生学习能力、学习习惯千差万别,因此仍会出现各种错误,比如不能正确识别同类项,混淆运算符号与项的符号,有理数运算错误等等,对此教师要密切关注学生的解题情况,搜集学生中的错误作为新的学习资料,组织学生查错因,想对策,谈体会,充分利用课堂生成的学习资源,让学生互帮互学,将新知逐步内化。
合并同类项:
除了以上的例题和练习,教材还提出了多项式相等的概念,让学生再次体会合并同类项的价值,这就使得整个知识链更加完整了。教学中我这样设计:
先提出问题:
多项式与多项式相等吗?
莽撞的学生会脱口答出:不相等。
这是因为学生对字母进行运算的意识还没有形成,对此我反问学生:2+3+5和1+6+3也不相等吗?
学生受到启发,恍然大悟,马上想到相等与否要通过运算才能下结论。这种顿悟让学生把以往对数的运算经验迁移到了现在对式的运算中,因而能更好的体会到合并同类项的价值,强化了对式子进行运算的意识和能力。接下来我又通过教材中的练习再次强化和巩固。
练习3.下列两个多项式是否相等?
习题A组3.如果多项式与多项式相等,则a=______,b=______,c=______.
在反思评价环节,我让学生从知识和课堂行为两方面进行反思评价:
1.这节课你学到了哪些知识?和以前哪些知识有联系?所学知识有何用处?
2.你是否主动积极地参与了小组讨论与学习,你发现自己或者小组成员有哪些地方需要改进?
通过反思,培养学生良好的学习和思考习惯,倡导积极健康的学习风气。
篇3:初一数学整式的加减说课稿<\/h2>
初一数学整式的加减说课稿
尊敬各位老师:
大家好!我是XX市实验初级中学XXX,能参加这次送教下乡活动,我感到十分高兴,同时也非常珍惜这样一个难得的交流和学习的机会,希望大家多多指教。我今天的说课课题是整式的加减第一课时。
以下我就五个方面来介绍这堂课的说课内容:
一、教材分析
本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
二、说教学目标
1、知识目标
(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2、能力目标
(1)在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。
(2)在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、情感目标:①激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。②让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育。
4、教学重点、难点
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
三、说教法
根据本节教材内容和学生的实际水平,为更有效地突出重点、突破难点,按照学生的认识规律,遵循“教师为主导、学生为主体、训练为主线”的指导思想,我采用问题探究式教学模式,结合学生自主学习、小组合作探究、展示交流、探究发现法、多媒体辅助教学等方法,教学中精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,并适时运用多媒体演示,激发学生探索知识的欲望,以此来达到他们对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力。
四、说学法
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。
五、说教学过程
本节课设计了以下几个环节:
第一环节:情景引入
创设具体、生动的课堂教学情境,正是激励,唤醒和鼓舞学生的一种教学艺术。数学中的情境导入设计,既要挖掘其生活中的应用价值,又要注重数学的内在联系与本质,既能促使学生以探索者的身份想去发现问题,总结规律,又能调动学生学习的积极性,激发学生的求知欲。
本节课以给汶川捐款的这个具体生活情景为背景,有效的吸引学生的注意力,增强好奇心及求知欲。既从侧面教育了学生,又使学生体会到体会到分类思想,顺利的引入新课。
总之,不管创设什么样的数学情境,核心是蕴含其中的数学问题。教师不仅要善于将所要解决的'问题设计在情境的问题中,为学生造成心理上的悬念。而且问题的创设不能偏离课本,它为学习新课而服务。这样才能调动学生学习的积极性,才能激发学生的求知欲,才能促使学生一开始进入创新思维状态中,以探索者的身份去发现问题,总结规律。更能提高我们的课堂效果,使数学课堂充满活力。
第二环节:目标解析
开始上课时,教师三言两语,或用投影显示,准确地揭示学习目标(注意不是教学目标)。课堂教学过程中只有有了明确、具体、切实可行的学习目标,学生才能有序、有方向的进行学习。科学制定学习目标可以有效提高课堂效率,因此在教育教学过程中学习目标是必不可少的。 科学合理的目标可以使学生明确“学什么”、“怎么学”,要知道“怎样才能学好”,“ 学到什么程度”,并为课后评价学生“学的怎么样”提供依据。
所以,我制定本节课的学习目标是:1、了解同类项的概念,会识别同类项;2、了解合并同类项的法则,熟练进行合并同类项。
第三环节:出示核心问题
数学课堂中的问题是数学课堂的灵魂。数学课堂中问题设置的恰当与否,决定着课堂教学的成败。若教师能把数学内容进行加工,结合本节课的教学目标,教学重难点,提出适合学生认识水平的问题,便积极诱发学生的思维。
结合本节课的教学目标,重难点,设计核心问题有两个:一是什么叫同类项?二是掌握合并同类项的法则,并会合并同类项。
第四环节:自主学习
自主学习能培养学生主动发展的能力;能使学生形成良好的学习品质;能培养学生充分的自信心;能培养学生的创造意志力;能保护并激发学生的好奇心。
为了降低难度,在学生自主学习时,我以有趣问题为导向,使学生产生好奇并迫切解决问题的心理。组织学生在规定时间内完成学习任务,要求学生心静、脑动、自主分析、解决问题,并对疑点问题进行标注。这样才能把学生引入到有关情境中,充分发挥学生自主探求的思维活动。
所以,本节课第一个知识是同类项的概念,既是重点也是难点.为突出重点,突破难点,我设计了找朋友游戏,让学生观察给出的单项式,要求把你认为相同类型的式子归类,并说出分类依据。关键是这个分类依据,直击概念。这样让学生仔细观察、独立思考后,分组讨论,互相交流,然后每组派一名代表发言,概括这两组单项式的特征.教师倾听学生交流,在学生概括出上述几组单项式的特征之后,提出同类项的概念,紧接着进行强化训练,通过想一想,温馨提示,判断同类项,考考你,延伸拓展题来达到对概念的理解。
设计意图:学生直接参与到同类项概念产生的过程,不仅能够有效地促使学生理解同类项的含义,而且能使学生体验获得成功的喜悦,同时培养和提高学生归纳、抽象概括的能力.为巩固同类项的概念,我设计了一道判断题,由学生一个个单独完成,并简单阐述理由,让学生充分发表意见,关注每一个学生.通过这个活动加深对同类项概念的理解,为后面合并同类项打好基础.另外还设计一道开放性题目,让学生自己动手写出两组同类项,组内交流写出的项是否符合要求,教师深入学生中间,参与指导,帮助加深理解同类项的含义,扩展学生的思维空间,培养学生的抽象思维能力和发散思维能力.
第六环节:小组合作探究学习
新课程强调,教学是教与学的交往、互动,生生之间、师生之间双方相互交流、相互沟通、相互启发、相互补充,在这个过程中教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。交往昭示着教学不是教师教、学生学的机械相加,传统的严格意义上的教师教和学生学,将不断让位于师生互教互学,彼此将形成一个真正的“学习共同体”。对学生而言,交往意味着人人参与,意味着主体性的凸显,个性的表现,创造性的解放。对教师而言,交往意味着上课不是传授知识,而是一起分享理解;上课不是单向的付出,而是生命活动、专业成长和自我实现的过程。交往还意味着教师角色定位的转换:教师有教学中的主角转向“平等中的首席”。从传统的知识传授者转向现代的学生发展的促进者。可以说,创设基于师生交往的互动、互惠的教学关系,是本次教学改革的一项重要内容,也就是我们所期待的课堂。
这个环节,主要针对核心问题进行小组讨论。在整个过程中,教师要保持缄默,给学生留出充足的时间思考、交流。教师在巡视的过程中,既要确保学生围绕核心问题思考、合作交流讨论,又要了解学生的讨论情况,便于点拨,也可以根据情况适时进行个别辅导。
本环节,先引导学生利用两种方法求长方形的面积,得出合并同类项的概念。再问学生这一运算过程像之前学过的乘法分配律的逆用吗?
设计意图:通过对熟悉的事物,让学生感受到数学就在身边,提高学生应用数学知识解决实际问题的能力,增强应用意识。
以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题合并同类项。分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。
然后,趁热打铁,出示课本例题1,能根据乘法分配律合并同类项。教师追问,如果每次这样是不是很麻烦,你能试着总结合并同类项的法则吗?学生小组讨论交流,得出法则。
然后进行课本例题2,学生扮演,善于利用错误资源来让学生加深理解。以设计意图:一道例题的训练为桥梁来得出合并同类项的一般步骤。通过具体的练习让学生初步掌握如何运用合并同类项法则。
接着用一道“看谁算得快”一题,让思路不同的两位同学板演,从中体会先化简再求值的简便性,达到学以致用的目的。
设计意图:在比较两种方法的过程中,体会合并同类项对运算的简化作用。
第七环节 :展示交流,教师点拨
经过充分的自学和讨论,学生对本节内容、重难点及重难点的解决方法有了进一步的认识和理解,并具备了一定的应用本节知识解决问题的能力,但对本节知识点的内涵、外延、本节知识与前后知识的联系及本节知识的进一步应用还不能达到本节的学习目标。这就需要教师对本节的重难点、本节知识点的内涵、外延、本节知识与前后知识的联系及本节知识的进一步应用,用精练的语言进行进一步的阐述和强调,使学生对本节知识形成清晰的网络,能熟练的应用本节知识解决有关问题。但是讲解不可过多,仅仅针对学生提出的普遍性的、教师认为比较重要的、应用比较广泛的问题进行讲析和强调。
课堂教学是一门艺术,懂得适时课堂小结更是一门艺术。俗话说:编篓编筐,重在收口;描龙画凤,重在点睛。“收口”和“点睛”是小结的神圣使命,需要艺术创造。设计好的课堂小结可以使知识得以概括、深化;可以使整个课堂教学结构严谨,浑然一体,显示出课堂教学的和谐和完美;可以诱发学生积极思维,进行深入探究,从而余音缭绕,回味无穷。课堂小结不单可小结本课知识点,也可适时小结学法,也可由教师提出启发性的问题让学生自己小结,甚至也可把生生间的互评带到课堂小结中来。它的作用是不可低估的。本节课通过1.本节课所学习的主要内容2.本节课涉及的数学思想方法3.本节课你还有什么疑惑来达到对本课知识的总结和归纳。
设计意图:由学生总结本节课内容,逐步提高学生的归纳总结能力和语言表达能力。进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。
第九环节:目标检测
课堂检测是教师了解学生对本节课知识掌握情况的一个重要手段,它是教学效果的反馈,在教学中有着非常重要的作用。通过有针对性的练习,巩固所学,拓展知识,形成应用能力。
本环节主要是针对学生对本节内容的掌握程度进行检测反馈。学生在经过自学、置疑、解疑、教师点拨后作一套本节的检测题。做完后,教师或学生给出答案,并给予简单解析。教师对检测成绩做以简单的统计,了解本节课的学习效果。
检测题必须精心设计与安排,因为学生在做经过精心安排的检测题时,不仅在积极地掌握数学知识,而且能获得进行创造性思维的能力。要充分发挥检测题的功能,设计检测题时应由浅入深、难易适当、逐步提高、突出重点与关键、注意题型的搭配。在试题设计上,应将知识、素质、能力的考查统一起来,既有知识性、分析性题目,又有应用性、直觉形象性题目。提高创新性题型的比重和难度,少问“是什么”,多问“为什么”、“对某些问题,你以为如何”等,增强答案的发散性。
设计意图:进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。
第十环节:作业布置
为减轻学生的课业负担,从课本中调选了几道题.第一题是合并同类项,第二题求代数式的值,既能巩固同类项的概念,又可利用合并同类项的法则进行计算,起到巩固新课的目的.第三、四题是实际应用题,进一步培养学生运用所学知识解决实际问题的能力,增强运用数学意识.学生通过独立思考,完成课后作业,老师批改,做好批改记录,及时反馈学生学习的效果,便于进行课堂教学优化。
篇4:初一数学整式怎么学<\/h2>
数学概念学习方法。 数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度。数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。 下面我们归纳出数学概念的学习方法: 阅读概念,记住名称或符号。 背诵定义,掌握特性。 举出正反实例,体会概念反映的范围。 进行练习,准确地判断。
数学公式的学习方法 公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。 我们介绍的数学公式的学习方法是: 书写公式,记住公式中字母间的关系。 懂得公式的来龙去脉,掌握推导过程。 用数字验算公式,在公式具体化过程中体会公式中反映的规律。 将公式进行各种变换,了解其不同的变化形式。 将公式中的字母想象成抽象的框架,达到自如地应用公式。
数学定理的学习方法。 一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。 下面我们归纳出数学定理的学习方法: 背诵定理。 分清定理的条件和结论。 理解定理的证明过程。 应用定理证明有关问题。 体会定理与有关定理和概念的内在关系。 有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行。
初学几何证明的学习方法。 在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展。 看题画图。 审题找思路 阅读书中证明过程。 回忆并书写证明过程。
提高几何证明能力的化归法。 在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧。这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的。 化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束。此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程。
课外学习的习惯 开展数学课外活动,开阔学生的视野。对学有余力的学生,在基础知识已经掌握的情况下,在教师引导下开展丰富的课外活动,如解答趣味数学题:阅读有关数学课外读物,撰写学习数学的专题论文,记叙数学和数学家的故事,总结数学思想方法,解决力所能及的实际问题等,也可通过数学专题讲座或数学家报告会,数学演讲会,数学竞赛等活动,给自己一个发展数学能力的空间。
篇5:初一数学整式怎么学<\/h2>
一、代数式与有理式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、整式和分式统称为有理式。
3、含有加、减、乘、除、乘方运算的代数式叫做有理式。
二、整式和分式
1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
2、有除法运算并且除式中含有字母的有理式叫做分式。
三、单项式与多项式
2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。
单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
1).合并同类项的概念:
把多项式中的同类项合并成一项叫做合并同类项。
2).合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3).合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起,字母和字母的指数不变。
c.写出合并后的结果。
4).在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
1)列出代数式:用括号把每个整式括起来,再用加减号连接。
2)按去括号法则去括号。
3)合并同类项。
4、代数式求值的一般步骤:
代数式化简
代入计算
对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式a相乘,记作an,读作a的n次方,其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n=am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。n=amn。
3、此法则也可以逆用,即:amn=n=m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即n=anbn。
3、此法则也可以逆用,即:anbn=n。
八、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n。
2、此法则也可以逆用,即:am-n=am÷an。
九、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1。
十、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数。注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十一、整式的乘法
单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:=x2+x+ab。
十二、平方差公式
1、=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2-b2=。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
?的形式,然后看a2与b2是否容易计算。
十三、完全平方公式
1、=a±2ab+b即:两数和的平方,等于它们的平方和,加上它们的积的2倍。
2、公式中的a,b可以是单项式,也可以是多项式。
十四、整式的除法
单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。
多项式除以单项式的法则
1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
2、多项式除以单项式,注意多项式各项都包括前面的符号。
初一数学学习方法指导<\/p>
1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是最好的老师嘛。
2.认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法、记技巧、记疑点、记要求、记注意点,记住课后一定要整理笔记。
3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容、加深理解、强化记忆很重要。
4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己,如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5.学会总结:大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。
6.学会管理:管理好自己的笔记本、作业本、纠错本还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料。
篇6:整式数学教案设计<\/h2>
整式数学教案设计
一、教材分析
1.教材的地位及作用
整式的加减一章是在前两章代数初步知识和有理数的基础上进行学习的,本章主要内容是单项式、多项式、整式的有关概念及整式的加减运算等,它既是对前面所学知识的深化和发展,也是今后学习一次方程、整式乘除等数学知识及其它科学知识的基础。
整式一节是整式的加减一章的起始课,整式是代数式中最基本的式子,而单项式又是整式中最基础的知识,所以本节内容是本章的基础,具有承上启下的`作用。
2.教学重点与难点
教学重点:
单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:
单项式概念的建立
本节课是研究整式的开始,知识由数向式转化,比较抽象,与学生的认知基础和思维能力有一定差距,学习中会有一定困难。特别是对比较复杂的单项式,在确定其系数和次数时容易出现错误。为了突出重点,突破难点,教学中要把握以下两点:
加强直观性:
为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念。
注重分析:
在剖析单项式结构时,借助变式和反例练习,抓住概念易混处和判断易错处,强化认识。
二、教学目的
了解单项式及单项式系数、次数的概念。
会准确迅速地确定一个单项式的系数和次数。
初步培养学生观察、分析、抽象、概括等思维能力及应用意识。
三、教材处理与教学方法
注重本章知识的整体性,按整体一局部一整体的顺序展开。先利用章头图提出问题,结合所列代数式2对本章知识进行整体介绍,然后转入本节课内容的教学。
针对初一学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时,将以启发谈话法为主,进行讲解及练习,达到掌握知识的目的,逐步培养学生观察、分析、抽象、概括的能力。
篇7:七年级数学上册《整式》优秀说课稿<\/h2>
七年级数学上册《整式》优秀说课稿
各位老师:大家好!今天我将对人教版七年级数学第二章第一节《整式》的第一课时进行说课。下面,我将从教材分析、教法分析、学法分析、教学过程四个方面进行阐述。
一、教材分析
1、教材的地位及作用、“整式的加减”一章是在前一章“有理数”的基础上进行学习的,本章主要内容是单项式、多项式、整式的有关概念及整式的加减运算等,它既是对前面所学知识的深化和发展,也是今后学习一次方程、整式乘除等数学知识及其它学科知识的基础。本节课作为本章的起始课显得很重要,为下节课多项式打基础,也为今后《整式加减》的学习作铺垫。2、教学重点与难点、重点:单项式及单项式的系数、次数的概念。难点:能准确迅速地确定一个单项式的系数和次数。3、教学目的、认知目标:(1)了解单项式及单项式系数、次数的概念;能用单项式表示具体问题中的数量关系。(2)会准确迅速地确定一个单项式的系数和次数。能力目标:初步培养学生观察、分析、抽象、概括等思维能力及应用意识。情感目标:(1)通过交流,研讨活动,培养学生主动与他人合作的意识;(2)通过用含有字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要的数学工具之一。
二、教法分析
注重本章知识的整体性,按整体一局部一整体的顺序展开。先利用章头提出问题,结合所列代数式100t对本章知识进行整体介绍,然后转入本节课内容的教学。针对初一学生学习热情高,但观察、分析、认识问题能力较弱的特点,采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,坚持启发式教学,使学生能顺利地掌握重点,突破难点,提高能力。特别是对比较复杂的单项式,在确定其系数和次数时容易出现错误。为了突出重点,突破难点,我在教学中主要把握以下两点:(1)加强直观性:为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念。(2)注重分析:在剖析单项式结构时,借助变式和反例练习,抓住概念易混处和判断易错处,强化认识。鉴于本课内容需要书写的文字多(特别是例题)以及需要补充一些例子,我决定采用多媒体教学,一方面增大教学密度和容量,另一方面增强教学的直观性。
三、学法分析
在课堂教学中,引导学生体会知识的发生发展过程,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现学生的主体性。在充分尊重教材的前提下,增设了由浅到深、各不相同却又紧密相关的训练题目,使学生顺利掌握单项式概念及其相关的系数、次数的概念。
四、教学过程
1、创设情境提出问题创设情境提出问题本课开始以章头的问题吸引学生的注意力,激发学生学习的兴趣和积极性,从而自然引入新课。通过实际事例,体会用字母表示数的简洁性和必要性。2、探索新知、(1)通过课本54页思考题让学生讨论分析归纳出单项式的概念,然后举一些反例让学生理解单项式与代数式的区别是:单项式必须为数或字母之间的乘积,可以是:字母之间相乘,数字之间相乘,数字和字母之间相乘。并且单独的一个数或一个字母也是单项式。(2)紧接着让学生分析单项式的结构从而归纳出单项式的次数和系数的概念,重点强调了)学生容易出错的地方:单项式的系数包含其前面的负号。3、变式训练,熟练技能、变式训练,判断各代数式是否是单项式。不是请简要说明理由;是请指出它的系数与次数。①x+1;②1;
x
③πr2;
④-3a2b
2
(目的:了解学生对单项式有关概念是否理解、存在问题;巩固单项式的系数和次数概念。)4、例题讲解、利用课本的`例题1加深学生对概念的理解,同时对易错知识点进行总结:(1)圆周率π是常数,如2πr中,2π是系数。(2)单项式表示数字与字母相乘时,通常把数字写在前面,如2a;-m,ab.(3)当一个单项式的系数是1或-1时;“1”通常省略不写,如x2,-a2b等;(4)单项式的系数不能为带分数,带分数必须化成假分数;如11x2y写成x2y
4
54
(5)单项式次数只与字母的指数有关;是字母指数的和。(6)用字母表示数后,同一个式子可以表示不同的含义;比如前面的0.9a既可以表示电视机的售价,又可以表示长方形的面积。5、巩固练习、
(1)课本练习(第56页练习1)(2)拓展题123k+1127
3
xy
与
2
xy的次数相同,求k的值.
课本上的练习题让学生合作完成,补充的练习题进一步巩固概念,练习设计由浅入深、层层深入具有一定的梯度,学生完成比较容易;6、总结反思、(1)本节课你有哪些收获?(2)本节课你认为应该注意什么问题?7、布置作业、(1)教材59页习题2.1第1题:考查学生是否能用单项式表示具体问题中的数量关系。(2)将课本56页练习第一题改变以后用来考查学生对单项式系数和次数的理解。8、板书设计、2.1整式—单项式1、单项式的概念注:(1)单项式
表示数字与字母相乘时,通常把数字写在前面。(2)单独的一个数例题1练习或一个字母也是单项式。2、单项式的系数注:单项式的系数包含前面的负号。3、单项式的次数
篇8:八年级数学上册《整式的乘法》说课稿<\/h2>
八年级数学上册《整式的乘法》说课稿
尊敬的各位评委、各位老师:
大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。
一、说教材:
1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的数学思想。因此,它在整个初中阶段“数与式”的学习中占有重要地位。
2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:
(1)知识与能力:通过自己的'探索,用几何和代数两种方法得出多项式与多项式的乘法法则;
(2)过程与方法:在学生探究的过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。
3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。
二、说教法和学法指导:
为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。
三、说教学设计:
本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。
1、导学达标:
在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的学习。
2、探究释疑:
这一环节一共设计了两个探究活动。
第一个探究活动让学生进行了拼图游戏,通过比较所表示的拼出的大长方形面积,从而发现多项式乘以多项式的法则,然后和预习案中用代数方法所得出的结论进行比较。此时,教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法分配律的应用,从而突破了难点,进而让学生体会到转化以及数形结合的思想。
在得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.
接下来我设计了一道例题,例题是课本的题目,其目的是熟悉、理解法则。完成例1时,教师引导学生严格按照法则来做,并认真板书,规范了学生的解题过程,起到了示范作用。在完成例题之后,为了让学生检验自己对法则的理解和掌握程度
篇9:《整式的加减》说课稿<\/h2>
《整式的加减》说课稿
各位老师:
一、说教材:
1、教材所处的地位及作用:
本节课选自新人教版数学七年级上册2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
2、学生情况分析:
七年级学生理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心和求知欲,形象直观思维比较成熟,但抽象思维能力还比较薄弱。因此,我们要营造轻松、和谐的课堂气氛,充分激活学生的探索欲望,让学生在教师创设的情景中充满好奇的学,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题,在实践中领悟数学思想,在评价中逐步形成数学价值观。
二、教学目标:
关于教学目标,教学重难点以及教法在这里就不作一一说明了,重点给大家介绍一下教程。
三、教学流程:
(1)导入环节:
多媒体出示两个问题,以具体生活情景为背景,有效的吸引学生的注意力,增强好奇心及求知欲。
(2)形成概念:
在讲解同类项概念时为让学生充分发挥主体作用,从自己的视点去观察、归纳、总结出同类项的概念,我设计了小白兔找家和讨论环节。并编了一个同类项的口诀。
(3)强化概念:
为强化概念使学生牢固掌握同类项的知识,进一步加强对同类项概念的.理解。增强应用意识,培养学生的发散思维。我设计了真真假假和填空。
(4)合并同类项的讲解:
讲解合并同类项时,以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题合并同类项。
分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。又编了另一个口诀。
以一道例题的训练为桥梁来得出合并同类项的一般步骤。通过具体的练习让学生初步掌握如何运用合并同类项法则。
在比较两种方法的过程中,体会合并同类项对运算的简化作用。
(5)数学与生活:
通过对熟悉的事物,让学生感受到数学就在身边,提高学生应用数学知识解决实际问题的能力,增强应用意识。
(6)总结:
由学生总结本节课内容,逐步提高学生的归纳总结能力和语言表达能力。
(7)课堂感悟:
进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。
(8)作业:
进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。
篇10:整式的加减说课稿<\/h2>
一、教材分析:
本节课选自新人教版数学七年级上册2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
二、教学目标:
1、知识目标:
(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2.能力目标:
(1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;
并且能在多项式中准确判断出同类项。
(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3、情感目标:
激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
三、教学重点、难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
四、教学方法与教学手段:
(1)教法分析:
基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。
(2)学法分析:
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。
五、教学过程
一
问题1:
我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里。为何不把老虎与熊猫关在同一个笼子里呢?
问题2:
(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?
(2)生活中处处有分类的问题,在数学中也有分类的问题吗?
以具体生活情景为背景,有效的吸引学生的注意力,增强好奇心及求知欲。
观察下面单项式
5a与9a -5m2n与 6m2n -x2y与 8x2y 0与 5
有什么共同点?
2.思考:
归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)
让学生充分发挥主体作用,从自己的视点去观察、归纳、总结得出同类项的概念。
1、“真真假假”下列每组式子分别是同类项吗?为什么?
(1) x与y; (2)a b与ab ;-3pq与3pq;
(4)a 与a ;(5)a b与a bc;
2、K取何值时,-3 x y与-x y是同类项?
3、填充:
(1)在( )内填上相应字母,使得2( )3( )2与-x2y3是同类项;
(2)若 和 是同类项,则 =
使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。
如图,建筑工人用两种不同颜色的大理石铺设地面。请问这个两个长方形面积怎样表示?
怎样用代数式表示两种不同颜色的
大理石拼成的长方形的面积?
8 n +5 n = n
以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题合并同类项。
思考:
100t-252t=
3x2+2x2=
3ab2-4ab2=
上述运算有什么共同特点,你能从中得出什么规律?
合并同类项:
把同类项合并成一项就叫做合并同类项
法则:
(1)系数:各项系数相加作为新的系数
(2)字母以及字母的指数不变。
合并同类项一般步骤:
4x2+2x+7+3x-8x2-2
(1) 找同类项
(2) 合并同类项
例1讲解
尝试训练一:
3x-8x-9x
5a2+2ab-4a2-4ab
2x-7y-5x+11y-1
例2:
求多项式2x2-5x+x2+4x-3x2-2的值,
其中x=0.5
尝试训练二:
求多项式3a+abc-
分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。
以一道例题的训练为桥梁来得出合并同类项的一般步骤。通过具体的练习让学生初步掌握如何运用合并同类项法则。
在比较两种方法的过程中,体会合并同类项对运算的简化作用
例3:
水库中水位第一天连续下降了a小时,每小
时平均下降2cm;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
某商店原有5袋大米,每袋大米为x千克,
上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?一谈:通过本课的学习你有何收获?
课堂感悟:
1、什么叫合并同类项?
把多项式中的同类项合并成一项,叫合并同类项
2、合并同类项的法则是什么?
把同类项的系数相加,所得结果作为系数,字母和字母的指数不变通过对熟悉的事物,让学生感受到数学就在身边,提高学生应用数学知识解决实际问题的能力,增强应用意识。由学生总结本节课内容,逐步提高学生的归纳总结能力和语言表达能力。进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。
六、教学评价
教师的课堂组织显得尤为重要,教师的主导作用得到较好的发挥。
学生是课堂的主人,学生的主体地位得到较好地保证。
尊重学生在解决问题的过程中所表现出的不同水平。
注重知识的发展过程,渗透数学文化,但不能忽视学生基础知识的学习与基本技能的'培养。
篇11:人教版数学整式知识点<\/h2>
人教版数学整式知识点
1.单项式:
1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母也是单项式。
2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:
1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一部分,一起移动。
数学解题方法技巧和思路有哪些
做题原则“一快一慢”
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。
步步为营
数学中考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”或者“踩点给分”——踩上知识点就得分,踩得多就多得分。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分,能分步做的一定不列综合式,解答过程中,该展示的推理过程和步骤决不省略,一个题目不能完整做出也要尽可能得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”。
初中数学直线的性质
直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。
过一点的直线有无数条。
直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
直线上有无穷多个点。
两条不同的直线至多有一个公共点。
篇12:初一数学整式教案<\/h2>
学习目标:1、掌握三角形内角和定理的两个推论及其证明;
2、体会几何中简单不等关系的证明;
3、从内和外、相等和不相等的不同角度对三角形的角作更全面的思考。
二、试一试
自学指导:
1、如图∠1是三角形的一个外角,它与图中其它角有什么关系?
2、自学教材P242-243,看看你的结论是否正确,并对例1例2进行学习,
仿照证明三角形内角和定理的两个推论:
推论1:三角形的一个外角等于和它不相邻的两个内角的和。
推论2:三角形的一个外角大于任何一个和它不相邻的内角。
证明:
三、练一练
1、如图,下列哪些说法一定正确
A ∠HEC >∠B
B ∠B+∠ACB=180°—∠A
C ∠B+∠ACB<180°
D ∠B>∠ACD
2、已知:如图,在△ABC中,∠A=45°,外角∠DCA=100°,
求∠B和∠ACB的大小
初一数学整式教案
篇13:七年级数学整式练习题<\/h2>
七年级数学整式练习题整理
1、单项式 的系数是 ,次数是 ;
2、多项式 的各项为 ,次数为 ;
3、化简 的结果是 ;
4、已知单项式 与 的和是单项式,那么= ,= ;
5、三个连续的偶数中,n是最小的一个,这三个数的和为 ;
6、写出 的一个同类项 ;
7、当a=-2时,-a2-2a+1=______;
8、已知轮船在静水中前进的速度是 千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的速
度是 千米/时;
9、观察下列算式:
若字母n表示自然数,请把你观察到的规律用含有n的.式子表示出来 ;
10、一张长方形的桌子可坐6人,按下图将桌子拼起来。
按这样规律做下去第n张桌子可以坐 人。
A 与 是同类项 B 和 是同类项 C 和 是同类项 D 和 是同类项
A: B: C: D:
A: B:
A:六次 B:三次 C:不低于三次 D:不高于三次
A:-1 B:-2 C:-3 D:-4
A: -5 +3 B:- + -1 C:- +5 -3 D: -5 -13
17、甲乙两车同时同地同向出发,速度分别是x千米/时,y千米/时,3小时后两车相距千米。
A:3 B:3 C:3 D:以上答案都不对
18、已知 则 的值是A: B:1 C: D:15
19、-去括号得 A : B: C: D:
A:2 B:-2 C:4 D:-4
21、化简: ① ②
22、化简再求值: ,其中 。
23、已知多项式 与多项式 和差中不含有 ,求 的值。
24、三角形的第一边长为 ,第二边比第一边长 ,第三边比第二边短 ,求这个三角形的周长。
25、如右图,一块正方形的铁皮,边长为a㎝,如果一边截去宽4㎝的一条,另一边截去宽3㎝的一条,求剩余部分的面积。
26、某工厂第一车间有人,第二车间比第一车间的人数的少30人,如果从第二车间调出10人到第一车间,那么:①两个车间共有多少人?②调动后,第一车间的人数比第二车间多多少人?
27、已知 , ,求:⑴A+2B; ⑵、当 时,求A+5B的值。
篇14:数学整式的练习题<\/h2>
数学整式的练习题
以下是为您推荐的整式单元检测题,希望本篇文章对您学习有所帮助。
整式单元检测题
102003
5、自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.
已知1纳米=米,则2.25纳米用科学记数法表示为米
A、2.25×109B、2.25×108C、2.25×10-9D、2.25×10-8
7、
52
6cm5cm8cm7cm
10005000500
12、一个多项式的平方是,则。
13、计算:.
14、计算:.
15、计算;0+-2=;
16、计算:=__________.
15、已知2x4+b与-3x2ay5-b是同类项,则代数式a2-2ab+b2的'值是。
16、已知:,则a2+b2=___________。
17、若是一个完全平方式,则m的值是
18、已知,那么的值是。
19、小明和小刚在一次赛跑比赛中,小明的速度与小刚速度之比为3:2,若小明的速度为b米/秒,两人同时同一地点起跑,跑了t秒后,两人的距离为米。
20、如图,用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
第四个图案中有白色地砖块;
21、
22、0×2÷+—2÷2—3
23、-8m2n224、解方程:
其中x=2,y=-1
28、已知:a+=3,求a2+的值。
29、观察下列各式:……
请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识
