范文资源网

导航栏

×
你的位置: 范文资源网 >资料 >导航

有理数运算教案(范本十七篇)

时间:2017-12-17

有理数运算教案(范本十七篇)。

■ 有理数运算教案

把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算

按教师要求口答并读出结果

师生共同小结:

有理数加减法混合运算的题目的步骤为

1.减法转化成加法;

2.省略加号括号;

3.运用加法交换律使同号两数分别相加;

4.按有理数加法法则计算。

采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。

这两个题目是本节课的重点.采用测验的方式来达到及时反馈。

归纳小结

教师提问:

1.怎样做加减混合运算题目?

2.省略括号和的形式的两种读法各是什么?

学生讨论后口答小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。

布置作业必做题:(一)计算:

(1)-8+12-16-23;

(2)- + - -

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小? (2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?

综合考察

学以致用

体现分层次教学使不同学生得到不同的发展

附板书设计:

2.7有理数的加减混合运算

例题:计算: 练习处

1.(+3)-(-9)+(-4)-(+2)

2. - + - +

教学反思:

本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。

■ 有理数运算教案

有理数混合运算练习题

1?判断题::

(1)两个数相加,和一定大于任一个加数?

(2两个数相加,和小于任一个加数,那么这两个数一定都是负数?

(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号

(4)两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和

(5)两数差一定小于被减数?

(6)零减去一个数,仍得这个数?

(7)两个相反数相减得0?

(8)两个数和是正数,那么这两个数一定是正数?

(9)若a,b同号,则a+b=|a|+|b|? ( )

(10)若a,b异号,则a+b=|a|-|b|? ( )

(11)若a<0、b<0,则a+b=-(|a|+|b|)? ( )

(12)若a,b异号,则|a-b|=|a|+|b|? ( )

(13)若a+b=0,则|a|=|b|? ( )

2?填空题:

(1)一个数的绝对值等于它本身,这个数一定是____.一个数的倒数等于它本身,这个数一定____=一个数的相反数等于它本身,这个数是_____?

(2)若a<0,那么a和它的相反数的差的绝对值是____?

(3)若|a|+|b|=|a+b|,那么a,b的关系是_____?

(4)若|a|+|b|=|a|-|b|,那么a,b的关系是____?

3、(1)当b>0,时,a,a-b,a+b,哪个最大?哪个最小?

(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?

计算题

??1??1??5?????5????2????12???(?60)????????。

?9917?918

4??2??1?1???3????1????1???7??3??14?6

?13??2215?34??(?13)???343737

???7111?11????36?????59126????

14(?81)?2??(?16)49

选择题

1.下列说法正确的`是 ( )

(A)两个负数相加,绝对值相减

(B)正数加正数,和为正数;正数加负数,和为零

(C)正数加零,和为正数;负数加负数,和为负数

(D)两个有理数相加,等于把它们的绝对值第一文库网相加

2.已知甲、乙两个数都是有理数,那么甲数减去乙数所得的差与甲数比较,必为( )

(A)差一定小于甲数

(B)差一定大于甲数

(C)差不能大于甲数

(D)大小关系取决于乙是什么样的数

3.若|x|=3,|y|=2,且x>y,则x+y的值为 ( )

(A)1或-5 (B)1或5

(C)-1或5 (D)-1或-5

4.若|a|+a=0,则 ( )

(A)a>0 (B)a

5.已知x+y=0,|x|=5。那么样子|x?y|等于 ( )

(A)0 (B)10

(C)20 (D)以上答案都不对

3216.8与7的倒数和的相反数是 ( ) ?(A)正整数 (B)正分数 (C)负整数 (D)负分数

7.下列各式中,没有意义的式是 ( )

(A)0-2 (B)0÷2 (C)2÷0 (D)0×2

8.已知a?b?|a?b|,则有

(A)a?b?0 (B)a?b?0

(C)a>0,b

b?0a9.若,则一定有 ( )

(A)a=0 (B)b=0且a≠0

(C)a=b=0 (D)a=0或b=0

10.如果一个数除以这个数的绝对值的商为-1,那么这个数一定是 ( )

(A)正数 (B)负数

(C)+1或-1 (D)除零外的有理数

8888888811.8?8?8?8?8?8?8?8? ( )

(A)64 (B)8 (C)8 (D)9

12.两个数之和为负,积为正,则这两个数位应是 ( ) 864964

(A)同为负数 (B)同为正数

(C)是一正一负 (D)有一个是0

13.若a是负有理数,则?a3是 ( )

(A)正有理数 (B)负有理数 (C)非正有理数 理数

D)非负有(

■ 有理数运算教案

学习目标:

1、学会用计算器进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

学习重点:有理数的混合运算

学习难点:运算顺序的确定与性质符号的处理

教学方法:观察、类比、对比、归纳

教学过程

一、学前准备

1、计算

1)(—0.0318)÷(—1.4)2)2+(—8)÷2

二、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是?

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、18—6÷(—2)×2)11+(—22)—3×(—11)

3)(—0.1)÷×(—100)

2、师生小结

四、回顾与反思

请你回顾本节课所学习的主要内容

3页

五、自我检测

1、选择题

1)若两个有理数的和与它们的积都是正数,则这两个数()

A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数

2)下列说法正确的是()

A.负数没有倒数B.正数的倒数比自身小

C.任何有理数都有倒数D.-1的倒数是-1

3)关于0,下列说法不正确的是()

A.0有相反数B.0有绝对值

C.0有倒数D.0是绝对值和相反数都相等的数

4)下列运算结果不一定为负数的是()

A.异号两数相乘B.异号两数相除

C.异号两数相加D.奇数个负因数的乘积

5)下列运算有错误的是()

A.÷(-3)=3×(-3)B.

C.8-(-2)=8+2D.2-7=(+2)+(-7)

6)下列运算正确的是()

A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

2、计算

1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

3)(—48)÷8—(—25)×(—6)4)

六、作业

1、P39第7题(4、5、7、8)、第8题

2、选做题:P39第10、11、12、1314、15题

■ 有理数运算教案

1.教学目标

1.1地位、作用

在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

1.2学情分析

在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。

另一方面,课本知识的传授是符合学生的认知发展特点的。在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。

1.3教学目标

根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:

知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用。

能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。

情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。

1.4教材处理

根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。

2.重点、难点

2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。

2.2教学难点:异号两数加法的实际意义及法则的归纳。

3.教学方法与教学手段

本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。

在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。

4.教学过程:

4.1创设情境,让学生的思维“动”起来

[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。

说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。

4.2体验进程,让学生的思维“活”起来

“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。

[开放式探索]刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里?设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。

教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。

预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。 ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。

处理方法:①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼。③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。

教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。

4.3探究规律,让学生的思维“跳”起来

用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。

在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。

预先设想学生思路,可能从以下方面分类归纳,探索规律:

①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)

②从加数的不同数值情况(加数为整数;加数为小数)

③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)

④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)

⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)

教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。

■ 有理数运算教案

第一课时

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

三、情感态度与价值观

培养学生主动探索的良好学习习惯。

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算。

2.难点:异号两数相加的法则。

3.关键:培养学生主动探索的良好学习习惯。

四、教学过程

一、复习提问,引入新课

1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?

2.比较下列每对数的大小。

(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

五、新授

在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

要解决这个问题,先要分别求出它们的`净胜球数。

红队的净胜球数为:4+(-2);

蓝队的净胜球数为:1+(-1)。

这里用到正数与负数的加法。

怎样计算4+(-2)呢?

下面借助数轴来讨论有理数的加法。

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正。

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

■ 有理数运算教案

三维目标

一、知识与技能

(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

(2)能利用计算器进行有理数的乘法运算。

二、过程与方法

经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

三、情感态度与价值观

培养学生主动探索,积极思考的学习兴趣。

教学重、难点与关键

1.重点:能用法则进行多个因数的乘积运算。

2.难点:积的符号的确定。

3.关键:让学生观察实例,发现规律。

教具准备

投影仪。

四、 教学过程

1.请叙述有理数的乘法法则。

2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。

五、新授

1.多个有理数相乘,可以把它们按顺序依次相乘。

例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

又如:(+2)[(-78)]=(+2)(-26)=-52.

我们知道计算有理数的乘法,关键是确定积的符号。

观察:下列各式的积是正的还是负的?

(1)234 (2)234(-4)

(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

■ 有理数运算教案

一、 教学目标:

知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。

过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。

情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

二、教学重点:运用有理数的减法法则,熟练进行减法运算。

三、教学难点:理解有理数减法法则。

四、教 材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。

五、教学方法:师生互动法

六、教具:幻灯片

七、课时:1课时

八、教学过程:

1、计算(口答):

(1) 1+(-2)

(2) -10+(+3)

(3) +10+(-3)

2、出示幻灯片二:

如图:

这是20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

教师引导观察

教师总结:这就是我们今天要学习的内容(引入新课,板书课题)

1、师:谁能把10-3=7这个式子中的性质符号补出来呢?

(+10)-(+3)=7

再计算:(+10)+(-3),师让学生观察两式结果,由此得到:

(+10)-(+3)=(+10)+(-3)

观察减法是否可以转化为加法 计算呢?是如何转化的呢?

(教师发挥主导作用,注意学生的参与意识)

2、再看一题:

计算:(-10)-(-3)

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?

问题:计算:(-10)+(+3)

教师引导,学生观察上述两题结果,由此得到

(-10)-(-3)=(-10)+(+3)

教师进一步引导学生观察式子,你能得到什么结论呢?

教师总结:由以上两式可以看出减法运算可以转化成加法运算。

教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?

教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。

强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)

3 、例题讲解:

出示幻灯片三(例1和例2)

例1计算:

(1)6-(-8)

(2)(-2)-3

(3)(-2.8)-(-1.7)

(4)0-4

(5)5+(-3)-(-2)

(6)(-5)-(-2.4)+(-1)

教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。

例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?

师巡视指导,最后师生讲评两个学生的解题过程。

课后练习1、2

教师巡视指导

师组织学生自己编题

1、 谈谈本节课你有哪些收获和体会?[

2、本节课涉及的数学思想和数学方法是什么

教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。

课堂检测(包括基础题和能力提高题)

1、-9-(-11)

2、3-15

3、-37-12

4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?

学生思考后抢答,尽量照顾不同层次的学生参与的积极性。

学生观察思考如何计算

学生观察思考

互相讨论

学生口述解题过程

由两个学生板演,其他学生在练习本上做

第1小题学生抢答

第2小题找两个 学生板演。

学生回答

学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。

综合考查学以致用

既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础

创设问题情境,激发学生的认知兴趣。

让学生通过尝试,自己认识减法可以转化为加法计算。

学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力

可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力

可以照顾不层次的学生,调动学生学习积极性。

通过练习让学生进一步巩固新知,体验知识的应用性。

能增强学生学习的主动性和参与意识。

学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

锻炼学生综合运用知识,独立解题的能力

板书设计:

2.6有 理数的减法

有理数减法法则:

(+10)-(+3)=(+10)+(-3)

( -10)-(-3)=(-10)+(+3)

减去一个数等于加上这个数的相反数. 例1:

例2:

练习:

教学反思:

本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。

■ 有理数运算教案

教学目标 

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算。

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。

(二)知识结构

(三)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

2.关于“去括号法则”,只要学生了解,并不要求追究所以然。

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如

12-5+7 应变成 12+7-5,而不能变成12-7+5。

教学设计示例一

(一)

一、素质教育目标

(一)知识教学点

1.了解:代数和的概念。

2.理解:有理数加减法可以互相转化。

3.应用:会进行加减混合运算。

(二)能力训练点

培养学生的口头表达能力及计算的准确能力。

(三)德育渗透点

通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。

(四)美育渗透点

学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。

二、学法引导

1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。

2.学生写法:练习→寻找简单的一般性的方法→练习巩固。

三、重点、难点、疑点及解决办法

1.重点:把加减混合运算算式理解为加法算式。

2.难点:把省略括号和的形式直接按有理数加法进行计算。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片。

六、师生互动活动设计

教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。

七、教学步骤

(一)创设情境,复习引入

师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:

-9+(+6);(-11)-7.

师:(1)读出这两个算式。

(2)“+、-”读作什么?是哪种符号?

“+、-”又读作什么?是什么符号?

学生活动:口答教师提出的问题。

师继续提问:(1)这两个题目运算结果是多少?

(2)(-11)-7这题你根据什么运算法则计算的?

学生活动:口答以上两题(教师订正).

师小结:减法往往通过转化成加法后来运算。

【教法说明】为了进行,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础。这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作。

师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的。(板书课题2.7(1))

教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成。

(二)探索新知,讲授新课

1.讲评(-9)+(-6)-(-11)-7.

(1)省略括号和的形式

师:看到这个题你想怎样做?

学生活动:自己在练习本上计算。

教师针对学生所做的方法区别优劣。

【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算……这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法。

师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成……

学生活动:先自己练习尝试用两种读法读,口答(教师纠正).

【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。

巩固练习:(出示投影1)

1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来。

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+--.

2.判断

式子-7+1-5-9的正确读法是。

A.负7、正1、负5、负9;

B.减7、加1、减5、减9;

C.负7、加1、负5、减9;

D.负7、加1、减5、减9;

学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答。

【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。

2.用加法运算律计算出结果

师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加。

-9+6+11-7

=-9-7+6+11.

学生活动:按教师要求口答并读出结果。

巩固练习:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

学生活动:讨论后回答。

【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。

师:-9-7+6+11怎样计算?

学生活动:口答

[板书]

-9-7+6+11

=-16+17

=1

巩固练习:(出示投影3)

1.计算(1)-1+2-3-4+5;

(2).

2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

学生活动:四个同学板演,其他同学在练习本上做。

【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。

师小结:有理数加减法混合运算的题目的步骤为:

1.减法转化成加法;

2.省略加号括号;

3.运用加法交换律使同号两数分别相加;

4.按有理数加法法则计算。

(三)反馈练习

(出示投影4)

计算:(1)12-(-18)+(-7)-15;

(2).

学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的。

【教法说明】这两个题目是本节课的重点。采用测验的方式来达到及时反馈。

(四)归纳小结

师:1.怎样做加减混合运算题目?

2.省略括号和的形式的两种读法?

学生活动:口答。

【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。

八、随堂练习

1.把下列各式写成省略括号的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.说出式子-3+5-6+1的两种读法。

3.计算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作业

(一)必做题:1.计算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)选做题:(1)当时,,,哪个最大,哪个最小?

(2)当时,,,哪个最大,哪个最小?

十、板书设计 

随堂练习答案

1.(1)-5+7+3-1;(2)10-8-18+5+6.

2.负3加5减6加1或负3、5、负6、1的和。

3.(1)-4;(2)-10.2;(3)-.

作业 答案

(一)必做题:1.(1)-35;(2);(3)-41;(4)-6.3

(二)

教学目标 

让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。

教学重点和难点

重点:加减运算法则和加法运算律。

难点:省略加号与括号的代数和的计算。

课堂教学过程 设计

一、从学生原有认知结构提出问题

什么叫代数和?说出-6+9-8-7+3两种读法。

二、讲授新课

1.计算下列各题:

2.计算:

(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;

(7)-6-8-2+3.54-4.72+16.46-5.28;

3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:

(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;

(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;

(9)(a-c)-(b-d);(10)a-c-b+d.

请同学们观察一下计算结果,可以发现什么规律?

a-(b+c)=a-b-c;

a-(b+c+d)=a-b-c-d;

a-(b-d)=a-b+d;

(a+b)-(c+d)=a+b-c-d;

(a-c)-(b-d)=a-c-b+d.

括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。

4.用较简便方法计算:

(4)-16+25+16-15+4-10.

三、课堂练习

1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:

(1)两个数相加,和一定大于任一个加数。

(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数。

(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号。

(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和。

(5)两数差一定小于被减数。

(6)零减去一个数,仍得这个数。

(7)两个相反数相减得0.

(8)两个数和是正数,那么这两个数一定是正数。

2.填空题:

(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______.

(2)若a<0,那么a和它的相反数的差的绝对值是______.

(3)若|a|+|b|=|a+b|,那么a,b的关系是______.

(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.

(5)-[-(-3)]=______,-[-(+3)]=______.

这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化。

四、作业 

1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:

(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.

2.分别根据下列条件求代数式x-y-z+w的值:

(1)x=-3,y=-2,z=0,w=5;

(2)x=0.3,y=-0.7,z=1.1,w=-2.1;

3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:

(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.

4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?

(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?

5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。

(1)若a,b同号,则a+b=|a|+|b|.

(2)若a,b异号,则a+b=|a|-|b|.

(3)若a<0、b<0,则a+b=-(|a|+|b|).

(4)若a,b异号,则|a-b|=|a|+|b|.

(5)若a+b=0,则|a|=|b|.

6.计算:(能简便的应当尽量简便运算)

课堂教学设计说明

1.本课时是习题课。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。

■ 有理数运算教案

有理数大班教案



一、教案概述


本节课主要围绕有理数的基本概念、比较大小、四则运算以及实际应用展开,通过实际生活中的例子引导学生建立与应用有理数的思维方式和解决问题的能力。



二、教学目标


1. 知识目标:


(1) 掌握有理数的定义及性质;


(2) 理解有理数的大小比较;


(3) 掌握有理数的加减乘除法运算;


(4) 掌握有理数的实际应用。



2. 能力目标:


(1) 能够灵活应用有理数进行问题求解;


(2) 培养学生的逻辑思维和分析问题的能力;


(3) 培养学生的合作意识和创新意识。



3. 情感目标:


(1) 培养学生对数学的兴趣和学习的主动性;


(2) 培养学生解决问题的积极性和自信心;


(3) 培养学生团队合作和分享的精神。



三、教学重点


1. 有理数的基本定义和性质;


2. 有理数的大小比较;


3. 有理数的四则运算;


4. 有理数的实际应用。



四、教学内容与教学过程


1. 导入环节:


引入有理数的概念,通过讲述实际生活中的例子,如温度变化、海拔高度等,让学生了解有理数的存在是为了方便描述和比较各种实际情况。



2. 基础知识讲解:


(1) 有理数的定义和性质:讲解有理数的定义,包括整数和分数,以及有理数的相反数、绝对值等性质。


(2) 有理数的大小比较:引导学生掌握有理数大小比较的方法,如同分母相同、同正负比较、换算法等。


(3) 有理数的加减乘除法运算:讲解有理数的加法、减法、乘法和除法的口诀和规则,并通过例题进行演示和练习。



3. 拓展应用:


(1) 实际应用中的有理数:引导学生通过实际问题,如地图上的比例尺、购物折扣、游戏得分等,将有理数与实际应用结合起来。


(2) 探索问题:设置一些有趣的问题,让学生分组探讨并总结解题思路,鼓励学生动手实践和探索,培养他们的自主学习和解决问题的能力。



4. 巩固练习:


布置一定数量的课后作业,包括选择题、填空题和计算题,以巩固学生对有理数的掌握和运用能力。



五、教学评价与总结


1. 教学评价:


(1) 师生互动的评价:通过课堂上的问题解答和讨论,教师可以及时评价学生的回答是否正确并给予指导;


(2) 作业评价:通过对学生的课后作业进行批改和评价,及时发现学生的错误和不足,并给予及时的指导和反馈。



2. 教学总结:


(1) 总结所学内容:对本节课所学的有理数的基本概念、比较大小、四则运算以及实际应用进行总结;


(2) 学生反馈:鼓励学生分享自己的学习心得和体会,对他们的合作、创新以及问题解决的能力进行表扬和鼓励。



通过本节课的教学,学生可以系统掌握有理数的基本知识和运算方法,并培养学生将有理数与实际问题相结合的思维能力和解决问题的能力,为今后的学习打下坚实的基础。

■ 有理数运算教案

[教学目标]

1。正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2。了解分类的标准与分类结果的相关性,初步了解"集合"的含义;

3。体验分类是数学上的常用的处理问题的方法。

[教学重点与难点]

重点:正确理解有理数的概念。

难点:正确理解分类的标准和按照定的标准进行分类。

[教学设计]

[设计说明]

一。知识回顾和理解

通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?。(3名学生板书)

[问题1]:我们将这三为同学所写的数做一下分类。

(如果不全,可以补充)。

[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?

二。明确概念 探究分类

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数

[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?

三。练一练 熟能生巧

1。任意写出三个数,标出每个数的所属类型,同桌互相验证。

2。把下列各数填入它所属于的集合的圈内:

15,— ,—5, , ,0。1,—5。32,—80,123,2。333。

正整数集合 负整数集合

正分数集合 负分数集合

每名学生都参照前一名学生所写的,尽量写不同类型的,最后有下面同学补充。

在问题2中学生说出按整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决。

教师可以按整数和分数的分类标准画出结构图,,而问题3中的分类图可启发学生写出。

在练习2中,首先要解释集合的含义。

练习2中可补充思考:四个集合合并在一起是什么集合?(若降低难度可分开问)

[小结]

到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同。

[作业]

必做题:教科书第18页习题1。2:第1题。

作业2。把下列给数填在相应的大括号里:

—4,0。001,0,—1。7,15, 。

正数集合{ …},负数集合{ …},

正整数集合{ …},分数集合{ …}

[备选题]

1。下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?

+7,—5, , ,79,0,0。67, ,+5。1

2。0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?

3。图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分。你能说出这个重叠部分表示什么数的集合吗?

正数集合 整数集合

这里可以提到无限不循环小数的问题。并特殊指明我们以前所见到的数中,只有π是一个特殊数,它不是有理数。但3。14是有理数。

作业2意在使学生熟悉集合的另一种表示形式。

利用此题明确自然数的范围。0是自然数。这点可以在前面的教学中出现。

3题是一个探索题,有一定难度,可以分步完成,不如先写出正数,在写出整数,观察都具备的是其中哪个数。

■ 有理数运算教案

2.5 有理数的减法

题 目

有理数的减法

课时1

学校教者

年级七年

学科数学

设计来源

自我设计

教学时间

教学目标

1.理解有理数减法法则, 能熟练进行减法运算.

2.会将减法转化为加法,进行加减混合运算,体会化归思想.

重点

有理数的减法法则的理解,将有理数减法运算转化为加法运算.

难点

有理数的减法法则的理解,将有理数减法运算转化为加法运算.

教学方法

讲授教学过程

一、情境引入:

1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)

2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?

探索新知:

(一) 有理数的减法法则的探索

1.我们不妨看一个简单的问题: (-8)-(-3)=?

也就是求一个数“?”,使 (?)+(-3)=-8

根据有理数加法运算,有 (-5)+(-3)= -8

所以 (-8)-(-3)= -5 ①

2.这样做减法太繁了,让我们再想一想有其他方法吗?

试一试

做一个填空:(-8)+( )= -5

容易得到 (-8)+(+3 )= -5 ②

思考: 比较 ①、②两式,我们有什么发现吗?

3.验证:

(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?

3-(-5)=3+ ;

(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?

(-3)-(-5)=(-3)+ ;

(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?

(-3)-5=(-3)+ ;

(二)有理数的减法法则归纳

1.说一说:两个有理数减法有多少种不同的情形?

2.议一议:在各种情形下,如何进行有理数的减法计算?

3.试一试:你能归纳出有理数的减法法则吗?

由此可推出如下有理数减法法则:

减去一个数,等于加上这个数的相反数。

字母表示:

由此可见,有理数的减法运算可以转化为加法运算。

【思考】:两个有理数相减,差一定比被减数小吗?

说明:(1)被减数可以小于减数。如: 1-5 ;

(2)差可以大于被减数,如:(+3)–(-2) ;

(3)有理数相减,差仍为有理数;

(4)大数减去小数,差为正数;小数减大数,差为负数;

(三 )问题:

问题1. 计算:

①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22)

④(+2)-(+8) ⑤(-4)-16 ⑥

问题2.(1)-13.75比少多少??

(2)从-1中减去-与-的和,差是多少?

(四)课堂反馈:

1.求出数轴上两点之间的距离:

(1)表示数10的点与表示数4的点;

(2)表示数2的点与表示数-4的点;

(3)表示数-1的点与表示数-6的点。

归纳总结:

1.有理数减法法则2.有理数减法运算实质是一个转化过程

达标测评

【知识巩固】

1.下列说法中正确的是( )

A减去一个数,等于加上这个数. B零减去一个数,仍得这个数.

C两个相反数相减是零. D在有理数减法中,被减数不一定比减数或差大.

2.下列说法中正确的是( )

A两数之差一定小于被减数.

B减去一个负数,差一定大于被减数.

C减去一个正数,差不一定小于被减数.

D零减去任何数,差都是负数.

3.若两个数的差不为0的是正数,则一定是( )

A被减数与减数均为正数,且被减数大于减数.

B被减数与减数均为负数,且减数的绝对值大.

C被减数为正数,减数为负数.

4.下列计算中正确的是( )

A(—3)-(—3)= —6 B 0-(—5)=5

C(—10)-(+7)= —3 D | 6-4 |= —(6-4)

5.(1)(—2)+________=5; (—5)-________=2.

(2)0-4-(—5)-(—6)=___________.

(3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____.

(4)已知一个数加—3.6和为—0.36,则这个数为_____________.

(5)已知b ,则a,a-b,a+b从大到小排列________________.

(6)0减去a的相反数的差为_______________.

(7)已知| a |=3,| b |=4,且a,则a-b的值为_________.

6.计算

(1) (—2)-(—5) (2)(—9.8)-(+6)

(3)4.8-(—2.7) (4)(—0.5)-(+)

(5)(—6)-(—6) (6)(3-9)-(21-3)

(7)| —1-(—2)| -(—1)

(8)(—3)-(—1)-(—1.75)-(—2)

7.已知a=8,b=-5,c=-3,求下列各式的值:

(1)a-b-c;(2)a-(c+b)

8.若a0, 则a, a+b, a-b, b中最大的是( )

A. a B. a+b C. a-b D. b

9.请你编写符合算式(-20)-8的实际生活问题。

教与学反思

你有什么收获?

教学反思:

1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系.

2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。

■ 有理数运算教案

一、课题§2.5有理数的减法

二、教学目标

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力.

三、教学重点和难点

有理数减法法则

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力。

有理数减法法则。

有理数的减法转化为加法时符号的改变。

电脑、投影仪

习题:

一、从学生原有认知结构提出问题

1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:(1)____+6=20; (2)20+____=17;(3)____+(-2)=-20; (4)(-20)+___=-6.

二、师生共同研究有理 数减法法则

问题1 (1)4-(-3)=______ ;

(2)4+(+3)=______.

教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

思考:减法可以转化成加法运算.但是,这是否具有一般性?

问题2 (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

三、运用举例 变式练习

例1 计算:(1)9 -(-5); (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

例2 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?

例3 P63例3

例4 15℃比5℃高多少? 15℃比-5℃高多少?

练一练: P63. 1题 P64-65数学理解1、问题解决1、联系拓广1、2题.

补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.

2.计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;

(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.

3.计算:(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);

4.当a=11,b=-5,c=-3时,求下列代数式的值:

(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

四、反思小结

1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。

习题2.6知识技能1、3、4题。

本节课内容较为简单,学生掌握良好,课上反应热烈。

■ 有理数运算教案

有理数大班教案

一、教学目标:

1.了解有理数的概念和基本性质。

2.掌握有理数的加、减、乘、除的运算方法,并能正确应用。

3.能够将实际问题转化为有理数运算,并得出解答。

二、教学重点

1.有理数的概念和基本性质。

2.有理数的加减乘除的运算方法。

三、教学难点

1.将实际问题转化为有理数运算,并得出解答。

2.有理数运算中的易错点。

四、教学方法

1.利用多媒体教学手段进行图像化、动画化展示;

2.教师讲解结合学生互动,学生在课堂上互相讨论,激发兴趣愉悦感。

五、教学过程

Part1:概念讲解

1.有理数的概念

引入问题:1/2与-6/12的关系是什么?

教师引导学生讨论,最后得出结论:1/2与-6/12相等。

引入正负数:正数表示多,负数表示少的意思,因此,1/2代表多了一半,-6/12代表少了六分之一,两个数的关系是一样的。

通俗解释:有理数是整数和分数的统称,是数轴上所有的带有正负号的数。分数又可称为有理数,因为它由两个整数相除而成,而整数又是所有分母为1的有理数。

2.有理数的基本性质

教师通过演示和解释,讲解了有理数的基本性质,包括:

①乘积、和、差、商的结果仍为有理数;

②有理数的加法和乘法具有结合律、交换律、分配律;

③任何整数n都可表示为两个整数相减n=m-1。

Part2:有理数加减运算

1.有理数的加法

(1)同号两数相加:同号的两个数相加,结果取相同符号,绝对值等于两数绝对值之和。

如:(+2) + (+3) = +5;(-2) + (-3) = -5

(2)异号两数相加:异号两个数相加,结果取两数符号之差,绝对值等于较大数的绝对值减去较小数的绝对值。

如:(+2) + (-3) = -1;(-2) + (+3) = +1

2.有理数的减法

有理数的减法,可以看成是有理数加上相反数。

如:(+2) - (+3) = (+2) + (-3) = -1;(+2) - (-3) = (+2) + (+3) = +5

Part3:有理数乘除运算

1.有理数的乘法

(1)同号两数相乘:同号两个数相乘,结果为正,绝对值等于两数绝对值的积。

如:(+2) × (+3) = +6;(-2) × (-3) = +6

(2)异号两数相乘:异号两个数相乘,结果为负,绝对值等于两数绝对值的积。

如:(+2) × (-3) = -6;(-2) × (+3) = -6

2.有理数的除法

有理数的除法,可以看成是有理数乘上倒数。

如:(+2) ÷ (+3) = (+2) × (1/3) = 2/3;(+2) ÷ (-3) = (-2/3)

Part4:实际问题解答

将实际问题转化为有理数运算,并得出解答。

如:在一个账户中,存款3000元,每月利息为1.2‰,则1年后账户中的存款总额为多少?

解:先计算1个月的利息:1.2‰ × 3000元 = 3.6元

12个月的总利息:12×3.6元=43.2元

1年后账户中的存款总额:3000元+43.2元=3043.2元

六、课后作业

1.预习下一节课内容;

2.复习本课所学知识,做好笔记;

3.练习书本上相应的练习题和一些实际问题的计算。

■ 有理数运算教案

有理数大班教案



【教学目标】


1. 理解有理数的概念和性质,能正确运用有理数进行计算。


2. 通过课堂活动和讨论,培养学生的合作精神和解决问题的能力。


3. 提高学生对数学的兴趣和学习的主动性。



【教学内容】


有理数的概念和性质。



【教学重点】


1. 掌握有理数的概念和性质。


2. 能够运用有理数进行计算。



【教学难点】


能够正确理解和应用有理数进行计算。



【教学准备】


教学课件,黑板,白板,练习册等。



【教学过程】



一、导入(15分钟)


1. 教师进入教室后,向学生问候并提问:“什么是有理数?”


2. 学生回答后,教师给予简明扼要的回答,并通过多媒体展示有理数的定义和示例。


3. 教师引导学生思考:“有理数有哪些性质?”并请学生回答。


4. 教师给予学生鼓励和肯定,并进入下一个环节。



二、讲授(25分钟)


1. 教师通过多媒体或黑板介绍有理数的性质,包括加法、减法、乘法和除法的性质。


2. 教师通过一些具体的例子,解释有理数的加减乘除运算,并引导学生进行讨论和思考。


3. 教师通过讲解和示范,帮助学生理解有理数加减乘除的规则和方法。


4. 教师鼓励学生主动提问和解答问题,并提供一些系列的练习题供学生练习。



三、练习(30分钟)


1. 教师布置一些练习题,让学生在课堂上进行个人或小组练习。


2. 教师在黑板上公布答案,并解释每一道题的解题步骤和思路。


3. 学生在教师的引导下,互相讨论和研究练习题的答案,并提出问题和疑问。



四、巩固(15分钟)


1. 教师带领学生回顾本节课的重点和难点内容,并与学生共同总结有理数的概念和性质。


2. 学生积极参与讨论和回答问题,加深对有理数的理解和运用。


3. 教师鼓励学生灵活运用有理数解决实际问题,提高学生的解决问题的能力。



五、作业布置(5分钟)


1. 教师布置一些有理数的练习题作为课后作业。


2. 教师鼓励学生自主思考和解决问题,并鼓励学生在作业本上做出详细解答和解题步骤。



【教学反思】


本节课主要是讲授有理数的概念和性质,重点是加减乘除运算的规则和方法。采用问题引导式教学,激发了学生的思维和兴趣,提高了学生的学习积极性。在教学过程中,教师注重学生的合作和讨论,培养了学生的团队合作精神和解决问题的能力。通过课堂互动,增强了学生对数学的理解和应用能力。整节课学习氛围活跃,学生参与度高。同时,教师也发现了一些问题,比如有些学生对有理数的概念理解不够深入,需要加强讲解和练习;有些学生在解答问题时存在步骤不清晰的情况,需要引导学生注重解题步骤和方法。因此,在今后的教学中,将会加强这些方面的指导和训练,提高学生对有理数的理解和运用能力。

■ 有理数运算教案

学习目标

1、掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算;

2、在有理数的混合运算中,能合理地使用运算律简化运算。

教学重点和难点

重点:有理数的混合运算.

难点:在有理数的混合运算中,能合理地使用运算律简化运算。注意符号问题。

突破:从 小学四则混合运算出发, 采用以旧引新,课本示范,学生讨论,教师点拨。

教学过程

环节1 、温故知新

1、计算 ( 三分钟练习 ) :

( 1)(-2) 3 ; (2)-2 3 ; ( 3)-7+3-6 ; ( 4)(-3) × (-8) × 25 ;

( 5)(-616) ÷ (-28) ; (6)0 21 ; ( 7)3.4 × 10 4 ÷ (-5)、

2、说一说我们学过的有理数的运算律:

加法交换律:

加法结合律:

乘法交换律:

乘法结合律:

乘法分配律:前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?本节课我们学习有理数的混合运算

环节2、自主学习:

师:请同学们先阅读完预习要求,再用15分钟时间进行预习。

预习要求:

请同学们利用15分钟的自学时间完成学习内容中的三个模块, 自学中保持自学环境的安静,认真高效的完成自学任务。

自学内容要求:

1 、完成法则自学模块,理解 掌握有理数混合运算的法则;

2 、法则的运用。完成例1 、例2 的二个自学模块。

自学模块(一)

仔细阅读课本66 页第一段,完成下列内容。

1、 计算:

(1) -2 ×32=

(2) (-2 ×3 )2 =

2、 运算顺序有什么不同?

3、 小组交流:

回顾小学学过的四则混合运算顺序,有理数混合运算的顺序是怎样规定的?

有理数混合运算法则:―――――――――――――――――――――

―――――――――――――――――――――

自学模块(二)

例1计算:6 1 1 5

—×(-—-—)÷—

5 3 2 4

根据以下提示分析例1 计算

1、例1 中是一些什么样的运算?像含有这样运算的习题与在小学时的运算顺序一样吗?

观察运算:题目中有乘法、除法、减法运算,还有小括号.

思考顺序:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.

动笔计算:按思考的步骤进行计算,在计算时不要“跳步”太多。

检查结果:是否正确.

2、写出例1计算过程

3、巩固练习

试用两种方法计算:

16×(-3/4+5/8)÷(-2)

① ;

②、

使用运算律,解题步骤是怎样的?能计算出相同结果吗?但哪种方法更简便?

4、小组交流

自学模块(三)

例2计算:(-4) 2 ×[( -1) 5 +3/4+ (-1/2) 3 ]

1、根据以下提示分析例2计算

仿照例1.

观察运算:

思考顺序:

动笔计算:

检查结果:

2、写出例2计算过程

3、巩固练习

( 1 )(-4 × 3 2 )-(-4 × 3) 2、

(2)(-2) 2 -(-5 2 ) × (-1) 5 +87 ÷ (-3) × (-1) 4、

3、小组交流

环节3、达标检测

( 1)1÷(-1)+0÷4-(-4)(-1) ;

( 2)18+32÷(-2) 3 -(-4) 2 ×5、

(3)计算( 题中的字母均为自然数) :

[ (-2) 4 +(-4) 2 · (-1) 7 ] 2m · (5 3 +3 5 )、

以小组为单位计分,积分最高的组为优胜组.

环节4、课堂小结

今天我们学习了有理数的混合运算,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

教师引导学生一起总结有理数混合运算的规律.

1、先乘方,再——————————————————————

2、同级运算———————————————————————

3、若有括号———————————————————————

在有理数的混合运算中,能合理地使用运算律简化运算,并注意符号问题。

环节5、课后作业

课本67页习题

■ 有理数运算教案

教学目标

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.

2、能力目标:能应用正负数表示生活中具有相反意义的量.

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

重点:理解有理数的意义.

难点:能用正负数表示生活中具有相反意义的量.

教学过程

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.

讲授正数、负数、有理数的定义.

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.

三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.

分类:有理数的分类:两种分法.

应用:有理数可以用来表示具有相反意义的量.

■ 有理数运算教案

四则混合运算教学设计

一、混合运算

2、学生尝试列式,并交流:

3、运算顺序:

5、结合两题引导学生总结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

二、巩固练习:

2、下面的运算对吗?把不对的'改正过来。(题略)

2、(第5题)分析“我们组比你们两组的总人数多6人”,指名说说“你们两组的总人数”怎么算?

3、(第6题)比较两小题,说说两题的联系。

4、把这3道联系实际问题做在作业本上。

第一、二、三单元测试

三、教学小括号的混合运算:

3、同桌分别练习第2题的两组题,练习完后互相检查。全班交流。

四、(含有小括号的混合运算2)

2、添上括号,使下面的等式成立:

2、书上的第8题,学生读题,说说这题所涉及的数量关系式:

6. 总结含有中括号的混合运算的运算顺序。

板书设计:

2、第2题:你能直接在每组得数大的算式后面画“√”吗?

3、(3+3)+3÷3=6+3÷3=9÷3=3

三、布置作业:

p.42第6、7、8题

其中第7、8题要求学生写出基本的数量关系式。

文章来源://www.zy185.com/ziliao/113895.html

资料相关文章

更多>